Emerging Aviation Weather Research at MIT Lincoln Laboratory*

Haig Iskenderian

19 November 2015

*This work was sponsored by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

- Offshore Precipitation Capability
- Convective Weather Avoidance Polygons
- Forecast Confidence

Aviation Weather Information Shortfall:

Limited Offshore Observations and Forecasts

NEXRAD Radar Coverage

Sample Flight Tracks

Current Radar Analysis

Current Forecast Domain

Current Forecast Domain

The Offshore Precipitation Capability (OPC) is being developed to provide operational radar-like view of weather beyond radar coverage

OPC Input Data

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OPC Processing

Multiple, heterogeneous inputs are flexibly accommodated and optimally combined

Merging OPC and Radar

OPC is used to fill areas without weather radar coverage

OPC Mosaics and Lightning

2015-05-06T12:40:00

2015-05-06T12:40:00

Offshore Forecast

OPC Analysis 17 UTC 3 October 2015

OPC is the starting point for the offshore forecast

1 Hour Offshore Forecast

Valid 18 UTC 3 October 2015

Offshore Forecast blends OPC extrapolation with RAP numerical model forecast

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2015 FPAW 9 Iskenderian

8 Hour Offshore Forecast

Valid 01 UTC 4 October 2015

Offshore Forecast blends OPC extrapolation with RAP numerical model forecast

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2015 FPAW 10 Iskenderian

8 Hour Offshore Forecast Comparison

Valid 01 UTC 4 October 2015

Outside current forecast domain

Current 8 Hour Forecast

Offshore Forecast extends the range of current forecast

- Offshore Precipitation Capability
- Convective Weather Avoidance Polygons
 - Forecast Confidence

Weather Avoidance Field Identifying Storms that Pilots Avoid

Convective Weather Avoidance Model

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2015 FPAW 13 Iskenderian

Convective Weather Avoidance Polygons Identifying Clusters of Storms that Pilots Avoid

- In en route airspace, pilots avoid storms, not pixels
- Convective Weather Avoidance Polygon (CWAP) combines edges in the echo top field with WAF
- Identify the boundaries of storms that pilots tend to avoid

15 – 60 minute forecasts of CWAP can alert dispatchers, pilots, and ATC to growing storms that should be avoided

CWAPs, Flights and Weather

2013-09-11 14:40:00

Offshore CWAPs based on OPC

StopTime: 2015-03-27T13:55:05 | ValidTime: 2015-03-27T14:01:25

- Offshore Precipitation Capability
- Convective Weather Avoidance Polygons
- Forecast Confidence

How Much Can I Trust the Forecast?

Users often compare and contrast forecasts

Translate Weather to Permeability Important for Enroute Decisions

Forecast Confidence Combine Multiple Forecasts

 Developing machine learning methods to combine multiple forecasts of varying skill to provide the confidence in a permeability forecast

Forecast Confidence Combine Multiple Forecasts

 Developing machine learning methods to combine multiple forecasts of varying skill to provide the confidence in a permeability forecast

Forecast Confidence Combine Multiple Forecasts

 Developing machine learning methods to combine multiple forecasts of varying skill to provide the confidence in a permeability forecast

Impact Forecasting

Quantified Accuracy of Translated Forecast Components

*Forecast Skill: coefficient of determination (R^2) between forecasted and observed permeability

Combination of forecasts outperforms any single forecast

- Offshore Precipitation Capability (OPC)
 - Creating radar-like analyses for regions beyond radar
 - Forms the starting point for offshore forecast
 - Potential operational platforms for OPC include FAA NextGen Weather Processor and NWS Multi-Radar/Multi-Sensor (MRMS) system
- Convective Weather Avoidance Polygons (CWAP)
 - Leverages Convective Weather Avoidance Model
 - CWAP defines a region of airspace that pilots tend to avoid
 - Included as part of NextGen Weather Processor technical transfer
- Forecast Confidence
 - Combines multiple forecast models to provide forecast confidence for enroute planning
 - Included as part of NextGen Weather Processor technical transfer