VextGEN

Weather Technology in the Cockpit (WTIC) Program—Minimum Weather Services Friends/Partners of Aviation Weather (FPAW) November 19, 2015

Presented by

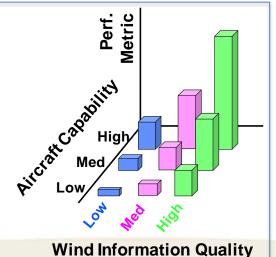
Gary Pokodner, WTIC Program Manager

Phone: 202.267.2786 | Email: Gary.Pokodner@faa.gov

WTIC Program Overview

- Portfolio of research projects to develop, verify, and validate requirements recommendations to incorporate into Minimum Weather Service (MinWxSvc) standards and guidance documents
- We define MinWxSvc as:
 - Minimum cockpit meteorological (MET) information
 - Minimum performance standards/characteristics of the MET information
 - Minimum information rendering standards
 - Enhanced MET training

WTIC Program Objectives


- Enhance General Aviation (GA) safety by identifying and resolving risks before they become accidents
- Incorporate MinWxSvc recommendations into standards and other guidance documents
 - Enables NextGen operations and benefits, and pilot roles
- Resolve operational (current and NextGen) inefficiencies associated with adverse weather
- Enhance pilot MET-training to enable effective and consistent adverse weather decision-making

WTIC is not building cockpit applications so outreach to industry is necessary for implementing MinWxSvc(s).

- Wind Study Project Overview
 - Develop trade spaces of wind accuracy impacts on selected NextGen operational scenarios (Time of Arrival, Interval Management, etc.) to support requirements development
 - Phase 4 of research project

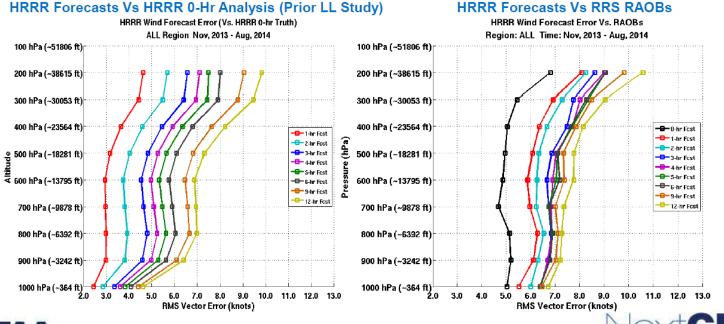
Sample Generic Trade Space

Task Purpose

- Perform wind model performance analyses to determine accuracy of "truth" wind information
 - Previous trade studies used HRRR analysis winds as truth
 - Future studies planning to use MDCRS data for truth
- Assess predictability of wind model performance/accuracy for HRRR and GFS
 - Identify indicators to predict forecast accuracy

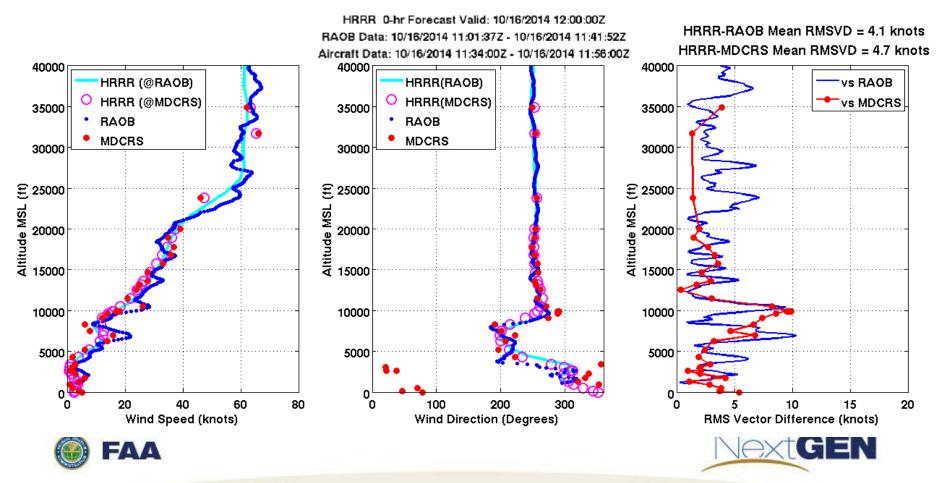
Source	Pros	Cons
NWS Radiosonde	 Most accurate No cost Lost of samples Easy access Input "Truth" for forecasts 	 Not correlated to flights Only two sample times (0/12Z) Spatially limited Very-low frequency
Model 0-hour	VolumetricNo costEasy access	 Heavy filtering (meso-scale) Low Frequency Accuracy is in question
MDCRS	 No cost Lots of samples Easy access In-situ Input "Truth" for forecasts 	 Highly subject to A/C dynamics Not associated with flight ID Phase lag (non-parallel winds) Erroneous reporting
Mode-S EHS Lincoln ASR	 Similar to MDCRS Samples all EHS equipped A/C in 60 NM radius Correlated to particular flight Sees down to surface at KBOS 	 Highly subject to A/C dynamics Erroneous reporting No temperature data Requires some devel & implementation
Mode-S EHS (Long-range) Elwood, NJ (FAA)	 Similar to MDCRS Samples all EHS equipped A/C in region with 200 NM radius Correlated to particular flight LL has data archives 	 Highly subject to A/C dynamics Erroneous reporting No temperature data Some process work to generate wind estimates
Custom E550 flights	 Can control sampling locations* Easy data collection Can minimize sampling error Control over A/C dynamics 	 Must pay for sampling on custom flights Orchestrate with Boston Center Phase lag (non-parallel winds)

Recent Activities


- Completed HRRR zero-hour forecast vs MDCRS comparisons (4 regions)
- Used publically available MDCRS data, but received authority to use unfiltered MDCRS data
 - Plan to use unfiltered MDCRS data for future trade studies
- Investigated potential sources of truth wind data for HRRR accuracy comparison

Interim results

 HRRR forecast errors vs RAOBs larger (2 to 4 knots) than vs HRRR analysis, and dependency on forecast lookahead time reduced


Interim results

- Generally good agreement seen between both RAOB and Aircraft (MDCRS) and HRRR analysis winds for initial case of a single descent profile
 - Wind shears get filtered in HRRR but are typically captured by RAOB
 - MDCRS captures more of the shears than HRRR
 - Plan to use MDCRS as truth over HRRR analysis winds for future trade studies

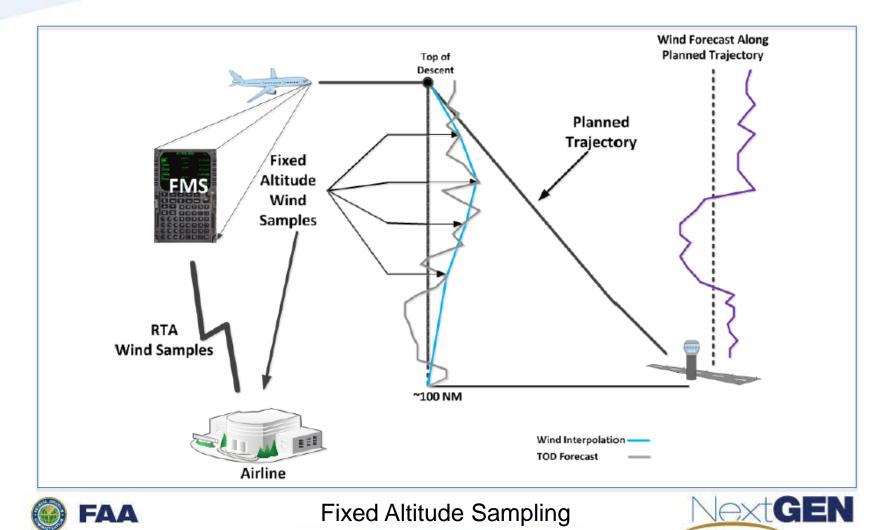
Interim results

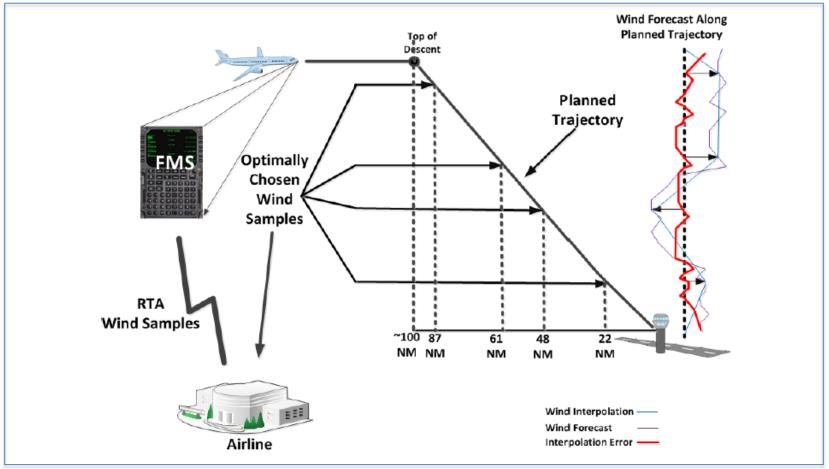
Next Steps

- Obtain tail number correlation lists for MDCRS reports
 - Enables correlation to flown routes for simulations
- Improve MDCRS data quality checks
 - Enhance filtering for future trade studies based on errors observed in post-MADIS filtered MDCRS data
- Explore predictability of wind model performance
- Evaluate model data as a function of aircraft trajectory
 - Identify error in headwind component on given trajectory
- May perform controlled flight tests to validate MDCRS data

Task Purpose

- Evaluate whether 9 descent winds at set altitudes versus 4 descent winds "optimally" chosen provide no significant improvement in meeting Required Time of Arrival requirements
 - Supports RTCA SC-206




Task Plan

- Use "simulated annealing" algorithm to optimize selection of four wind altitudes
 - Selected minimize fuel consumption across the predicted cruise and descent segments of flight based on the pre-flight forecast conditions as the optimize criteria
- Run simulations for 10 airports
- Use a variant of Honeywell Pegasus FMS software (has closed loop speed control for RTA implementation)
- Assess RTA performance
 - Optimized wind samples at 4 altitudes for one group
 - 9 wind samples at fixed altitudes for second group

Optimal Sampling

GA MET Presentation— Adverse Weather Notifications

Purpose

- Assess feasibility and utility of agile, low latency cockpit notifications to enhance pilot identification of hazardous weather
 - Evaluated existing weather notifications to determine effects of key qualities (such as latency) on weather-related decisions
 - Performed demonstrations with detailed scenarios to assess pilot performance with selected notifications
- Develop MinWxSvc recommendations for adverse weather notifications

GA MET Presentation— Adverse Weather Notifications

• Method

- Fly scenarios with various adverse weather conditions to assess the impacts of five variants of adverse weather notifications
- Parameters measured included: Reaction Time, Correctness % (situation and response), Source % (extent use of notification)

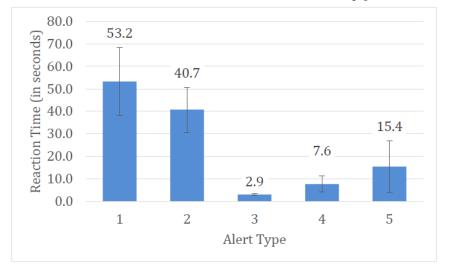
Alert Type	Text Summary Line Present	Audible Cue
1	No	No
2	Yes	No
3	No	Chime
3	Yes	Chime
5	Yes	Verbal summary

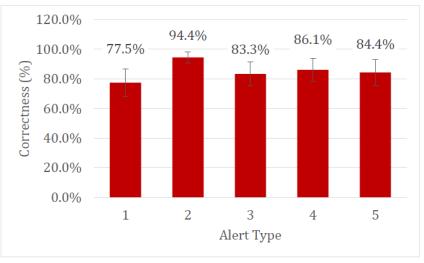
GA MET Presentation -Adverse Weather Notifications (Alert)

VSCL Flight Training Device, with the mounted Weather Alert Device (iPad)

GA MET Presentation— Adverse Weather Notifications

High-level results summary


- Persistent and attention-orienting cues resulted in more consistent use of weather information sources
- Purely auditory cues were susceptible to being missed and to an inability to quickly prioritize tasks to act on the cue (over-prioritized)
- Textual summary line resulted in best prioritization of notification response time
- Verbal annunciation with text summary line provided best performance and was most preferred by participants


GA MET Presentation -Adverse Weather Notifications

• Results summary, sample plots

Reaction Time for Each Alert Type

Correctness of weather-related decision

Presented by

Gary Pokodner, WTIC Program Manager

Phone: 202.267.2786 | Email: Gary.Pokodner@faa.gov