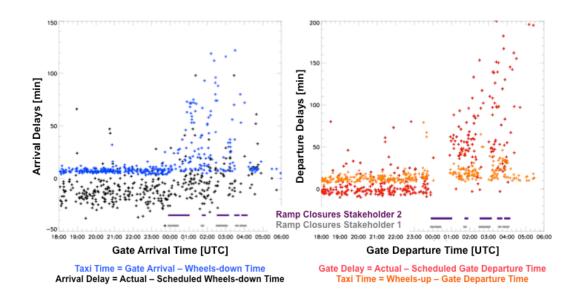
Lightning Impacts on Flight Operations

Matthias Steiner

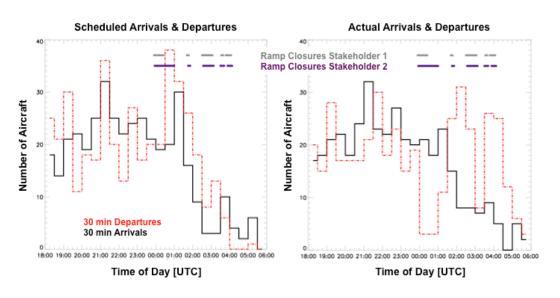
NCAR Research Applications Laboratory msteiner@ucar.edu

With contributions from Wiebke Deierling, Kyoko Ikeda (NCAR) and Randy Bass (FAA)

The Problem in a Nutshell


Mitigation – Ramp Closure

Ramp Closure Impacts on Air Traffic


Ramp Closure Impacts

- gate pushback delay (no service)
- taxi-out queuing (backlog)
- taxi-in delay (gate availability)
- delayed deplaning of passengers
- delayed turn-around times

Airport Balance

- aircraft landing, but no departures
- potential for gridlock
- impact ripple effects into national airspace system

Annual Impact Statistics

Direct Impacts

- gate pushback delays are substantial (on average several tens of minutes per affected flight)
- dependent on weather,
 demand, & airport complexity

Indirect Impacts

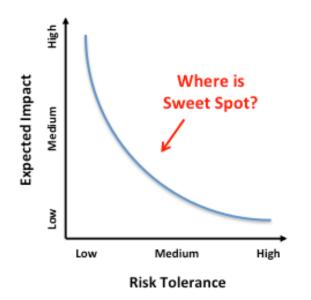
- taxi-out queuing delays
 as part of backlog recovery
 (on average 5 15 minutes)
- taxi-in delays caused by unavailable gates (on average 5 – 20 minutes)
- ripple effects beyond airport

Other Lessons

 weather alone is not good proxy for measuring traffic impacts

Average delays, taxi times & range of uncertainty for several major airports

Airport	Metric	Ramp Closures	No Closures	Average Impact
		min – max	min – max	Minutes/Flight
ATL	Gate Departure Delay	59.11 - 83.48	9.27 - 10.07	61.6
	Taxi Out	29.37 – 35.20	17.91 – 18.06	14.3
	Gate Arrival Delay	36.41 - 45.02	5.58 - 6.31	34.8
	Taxi In	13.14 - 21.68	8.98 – 9.02	8.4
DEN	Gate Departure Delay	44.95 – 77.28	12.86 - 13.76	47.8
	Taxi Out	21.47 – 25.75	14.72 – 14.87	8.8
	Gate Arrival Delay	25.31 - 41.63	6.93 – 7.76	26.1
	Taxi In	11.78 – 24.92	8.62 - 8.69	9.7
EWR	Gate Departure Delay	60.11 - 70.17	14.96 - 15.79	49.8
	Taxi Out	24.46 - 44.98	20.22 - 20.36	14.4
	Gate Arrival Delay	36.18 - 65.89	11.81 - 12.63	38.8
	Taxi In	11.26 - 14.74	8.56 - 8.61	4.4
IAD	Gate Departure Delay	61.17 - 98.20	12.47 - 13.20	66.9
	Taxi Out	15.87 – 32.47	16.55 – 16.76	7.5
	Gate Arrival Delay	37.29 - 63.52	6.26 - 6.69	43.9
	Taxi In	11.59 – 24.54	6.71 – 6.75	11.3
IAH	Gate Departure Delay	35.23 - 55.28	10.47 - 11.10	34.5
	Taxi Out	21.45 – 28.82	15.51 – 15.64	9.6
	Gate Arrival Delay	16.23 – 24.42	4.05 – 4.40	16.1
	Taxi In	9.34 - 13.36	7.38 – 7.42	4.0
MCO	Gate Departure Delay	42.65 - 70.06	9.08 - 10.19	46.7
	Taxi Out	16.52 - 18.14	13.36 - 13.47	3.9
	Gate Arrival Delay	17.65 - 29.20	4.46 - 5.16	18.6
	Taxi In	13.52 – 22.70	7.43 – 7.60	10.6
MIA	Gate Departure Delay	25.99 – 45.70	8.39 - 9.14	27.1
	Taxi Out	22.22 – 23.56	16.17 - 16.46	6.6
	Gate Arrival Delay	11.07 - 17.01	2.59 - 3.22	11.1
	Taxi In	9.68 - 15.17	7.82 – 7.91	4.6
ORD	Gate Departure Delay	70.61 - 104.01	15.06 - 16.02	71.8
	Taxi Out	21.50 – 30.57	16.15 - 16.41	9.8
	Gate Arrival Delay	48.79 – 71.77	8.85 – 9.90	50.9
	Taxi In	18.78 - 42.91	9.32 - 9.43	21.5


Ramp Closure Decisions

Today's Approach

- reactive based on lightning within critical distance
- reset waiting period with each lightning strike
- commercial decision support

Dilemma

- balancing safety & efficiency
- definition & quantification of risk
- risk tolerance

Challenge – Personnel Safety & Minimal Downtime

Lightning Information

Procedures

(distance & time)

(minimal downtime)decision support tools

 centralized versus distributed guidance

automated or

human centric

• safety rules

efficiency

- detection efficiency (sensor & network)
 - classification uncertainty (in-cloud & cloud-to-ground)
 - location accuracy
 - network evolution
 - choice of network

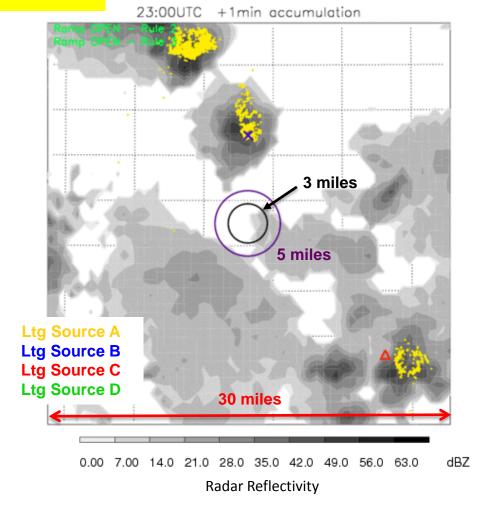
Human Cognition & Behavior

- trust in approach
- implementation of procedures (communication & timeliness)
- watching other stakeholders
- operational distractions

Challenge – Uncertainties Everywhere

Uncertainties with Lightning Networks

Measurement


- sensor (partial measure of spectrum)
- network (station density & placement)
- detection efficiency

Processing

- classification (IC & CG; stroke & flash)
- spatial extent & location accuracy
- data transmission & dissemination

Other Factors

- multiple national networks
- regional total lightning networks
- notable differences in detection efficiency & location accuracy
- evolution of networks & algorithms

• Implications

- missed lightning threats yield no ramp closures => people at risk of getting hurt
- unnecessary ramp closures (closed too long or no closure needed due to false alarm)inefficient operations
- uncertainties cause confusion, potential safety risks & inefficiencies

Effectiveness of Ramp Closure Implementation

Procedures

- reflecting varied degrees of risk tolerance
- increased pressures for operational efficiency
- tight rules may not necessarily yield smaller impacts
- source of lightning matters

Human Cognition & Behavior

- effectiveness of implementing established procedures varies by operator, time of impact, supervisor, etc.
- sometimes closing ramp early, but most often late, & occasionally ignoring lightning altogether
- watching other operators using different rules causes confusion & distrust

Ramp closures for June, July & August at one Core30 airport

Stakeholder	Closures (#)	Duration (min)	Hits (min)	False Alarms (min)	Misses (min)
Actual Nominal	37	1357 3138	1201	156	1937
Actual	96	2721	1799	922	366
Nominal		2165	1755	JEE	500
Actual 3	22	1191	891	300	713
Nominal	78	1604			

Summary

• Lightning Impacts on Aviation

- personnel safety concerns necessitate ramp closures
- lightning-induced ramp closures cause substantial impacts on aviation
- impacts quantifiable for both departures & arrivals
- some impacts may be avoidable => need to focus on that

• Uncertainties in Lightning Data

- detection efficiency, location & classification accuracy affect safety decisions
- understand & quantify uncertainty => yields buffers for decision support
- lightning networks are evolving => beneficial for reducing uncertainty

Challenges from User Perspective

- balancing safety concerns with operational efficiency => appropriate procedures
- trust in safety procedures & sources of lightning data (human cognition & behavior)
- weather is "nuisance" distracting from focus on operations

Acknowledgements

- Thank you to airport & airline partners in this research
- Thank you to Drs. Paul Krehbiel & Bill Rison for access to LMA lightning data
- Thank you to Earth Networks, Vaisala, and WSI for use of their respective lightning data

This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.