Helping GA pilots interpret NEXRAD in Convective Weather Situations

Beth Blickensderfer, Ph.D. John Lanicci, Ph.D. MaryJo Smith, Ph.D. Michael Vincent Robert Thomas, M.S.A, CFII Embry-Riddle Aeronautical University Daytona Beach, FL

Presentation given at the Friends and Partners of Aviation Weather Fall Meeting. October 23-24, 2013; Las Vegas, NV.

Problem

- Research has shown that GA pilots using data linked NEXRAD Radar do not understand all the facets of radar.
 - Used data link radar for tactical decision making (Latorella & Chamberlain, 2002).
 - Made tactical decisions when the radar resolution was higher (Beringer & Ball, 2004).
- A training module, "NEXRAD in convective weather," improved young pilots' radar knowledge, application skills, and confidence in using NEXRAD (Roberts, Lanicci, & Blickensderfer, 2011).

Purpose of current study

Further evaluate the Roberts et al. (2011) course:

- non-ERAU or current university students
- another region of the U.S.
- Part 61

Current Study

- 2 x 3 Mixed DesignIndependent Variables:
 - Location
 - KC x Chicago x Boston
 - Training
 - Pre-training scores x Post-training scores
- Dependent Variables
 - Radar Knowledge Test
 - Scenario Application Test
 - Self-Efficacy Questionnaire

Participants

- Kansas City
 - N = 24
 - Age: M = 58.9 (SD = 10.0)
 - Flight hours: M = 2348.3 (SD = 2832.83) Mdn = 765
 - 20 held instrument rating
- Chicago
 - N = 18
 - Age: M = 58.2 (SD = 10.6)
 - Flight hours: M = 2370.6 (SD= 4150.13) Mdn = 487.5
 - 14 instrument rating
- Boston
 - N = 32
 - Age: M = 50.7 (SD= 14.8)
 - Flight time: M = 2363.8 (SD = 4998.49) Mdn = 380
 - 19 instrument rating
- Recruited through flying clubs, the Civil Air Patrol, and flyers posted in FBO's
- Participants compensated with \$50 and WINGS credit (and lunch).

<u>Robert et al. (2011):</u>

31 ERAU pilots received course

Mean age: 21.8 years

Mean flight time: 328.47 hours

Participants

Participants by FAR training part and location

	Private			Comn	Commercial		Air Transport Pilot		
		Part	Part	Part	Part	Part	Part	Part	
	n	61	141	61	141	61	141	142	
Kansas City (KC)	24	18	3	9	3	2	1	1	
Chicago	18	12	3	5	3	0	2	0	
Boston	32	26	1	9	1	2	0	0	
Overall	74	56	7	23	7	4	3	1	

Note: Not all participants responded to this portion of the questionnaire.

Training Module

- Lecture based course
- Radar Basics, NEXRAD, Radar Modes, Thunderstorms, Using NEXRAD for Decision Making
- Two paper-based flight scenarios
 - Learners applied knowledge from course to respond to questions
 - Instructor gave feedback
- ~ 2 hours; breaks as needed.

Procedure

- Consent & Pre-test
- Course module
- Lunch
- Practice Scenarios
- Post-test
 - Parallel form questions
 - Additional novel scenario
- Debrief & compensation
- Total time: 6 hours

Effect of Training

Radar Knowledge Test:

• $F(1, 69) = 218.50, p < .001, \eta^2 = .76$

Effect of Training

Scenario Tests:

- $F(1, 69) = 170.58, p \le .01, \eta^2 = .712$
- Pretest: 65%
- Posttest 1: 85%
- Posttest 2: 71%

Effect of training

Self-Efficacy Questionnaire: • $F(1, 69) = 94.32, p \le .001, \eta^2 = .58$

Self-Efficacy Questionnaire

Reactions

- Participants rated the course highly
 M = 6.54 (SD = .51)
- (1 = Low, 7 = high)

Discussion

- Course appears to be effective with typical GA pilots.
- Similar pattern of results to Roberts et al. (2011).
- Course was given by a "naïve" instructor.
- Pre-test scores indicated pilots have limited knowledge about weather radar.
- Limitations: no control group; no retention test; no performance (flight) data.
- This short course has potential to increase pilots' interpretation of in-cockpit weather radar displays.

Thank you!

Blick488@erau.edu

Comparison Study

- 2 x 3 Mixed Design
- Training (pre vs. post)
- Condition: 3 levels:
 - Embry-Riddle control group (Roberts et al., 2011 dataset)
 - Embry-Riddle experimental group (Roberts et al., 2011 dataset)
 - General Aviation group (Current dataset)
 - Randomly selected 30

Interaction of Training and Condition

Radar Knowledge

Interaction of Training and Condition

Scenario Test

Interaction of Training and Condition

Self-Efficacy

Discussion

- All performed significantly better than the ERAU control group
- GA pilots outperformed the ERAU pilots
 - GA pilots draw from greater experience?
 - Course instructor was more effective in the GA condition?
 - GA pilots more motivated?
- Overall, course has strong potential to help GA pilots understand NEXRAD

Thank you!

Blick488@erau.edu

MANOVA Results

- Significant main effect of training (pre vs. post)
 - Wilks lambda $F(3, 67) = 142.24, p = .001, \eta^2 = .86.4$
- Significant main effect of location
 - Wilks lambda F(6, 134) = 3.00, p = .009,
- No significant interaction
 - *F*(6, 134) = .76, *p* = .605

Location: Univariate follow-up

- MANOVA revealed significant effect of location
- Univariate revealed no main effect for location
 - Radar Knowledge: F(2, 69) = .877, p = .420
 - Scenario: F(2, 69) = 2.05, p = .136
 - Self-Efficacy: F(2, 69) = .239, p = .788

Uneven groups

Results: MANOVA (Analysis 2)

- MANOVA revealed a significant main effect for each:
 - Condition: $F(6, 170) = 16.09, p \le .001, \eta^2 = .36$
 - Training: F(3, 85) = 40.54, $p \le .001$, $\eta^2 = .58$
 - Condition x Training:
 - $F(6, 170) = 31.16, p \le .001, \eta^2 = .52.$

Means (Analysis 2)

	Pretest		Posttest	
	Mean	SD	Mean	SD
Radar Knowledge				
Scores				
Control ERAU	65.00%	8.77%	55.66%	9.79%
Experimental ERAU	66.15%	8.08%	79.80%	7.60%
Experimental GA	56.04%	12.55%	76.59%	11.38%
Scenario Scores				
Control ERAU	57.11%	14.72%	56.86%	13.23%
Experimental ERAU	62.00%	13.80%	75.76%	10.69%
Experimental GA	64.04%	15.64%	86.14%	10.20%
Self Efficacy Scores				
Control ERAU	2.59	1.23	2.49	1.1
Experimental ERAU	3.18	0.968	4.02	0.6498
Experimental GA	3.42	0.41	3.83	0.533