

Weather Radar The Next 10 Years NBAA 2012, Orlando Florida

Craig Peterson Director of Avionics Marketing

© Copyright 2010 Rockwell Collins, Inc. All rights reserved.

Rockwell Collins Radar (Historical Perspective)

1956	First Rockwell Collins Airborne Weather Radar	
1980	First Rockwell Collins Solid State Weather Radar (Air Transport)	
1987	First Rockwell Collins Solid State Weather Radar (Corporate and Gen Av)	
1995	Predictive Windshear Systems Certified (Air Transport)	
2002	Multiscan Radar Certifies (Auto-tilt, Auto Ground Clutter Suppression, Global Geographic Correlation)	
2009	Multiscan Radar Certifies (Corporate and Regional Jet Platforms)	
2013	Multiscan "Version 2" Enters the Air Transport Market Segment	
2013	Predictive Windshear Enters Corporate and Regional Market Segment	

50+ Years and 40K Units of Airborne Radar at Rockwell Collins

What Is MultiScan?

MultiScan Baseline Functionality

Rockwell Collins

A Complete Threat Picture

Complete Threat Picture at a Glance

MultiScan Version 2

Summary of V2 Features

Rockwell

Collins

- Version 2.0 Threat Assessment Features
 - Track-While-Scan Cell Analysis
 - Inferential Lightning, Hail and Convective Assessments
 - Predictive Overflight Protection
 - Flight Path Threat Assessment
 - Two-Level Enhanced Turbulence Detection

Predictive OverFlight icon

Rockwell Collins

High Altitude associated threat, directional wind vector

Potential Future Features & Functions

High Altitude Ice Crystal Detection

What Is It?

- Ice Crystals that form at high altitudes
- Ice particles can adhere to compressors turbofan
 engines and lead to flame-outs
- Radar would directly or indirectly detect the existence of HAIC and provide indications to crew for avoidance

Note: Early discussions suggest that the current MultiScan radar may provide HAIC warning if used and interpreted properly in AUTO

Value Propositions;

- Enhanced Situational Awareness
 - Strategic Route Planning
- Enhanced Safety (Hazard Avoidance)
 - Enhance Aircraft and Flight Safety
 - Prevent engine flame outs
- Life Cycle Cost Reductions
 - Prevent / reduce engine maintenance cost

Implementation Issues;

- May Require Graphical HMI Changes
 - Colors or Symbols
 - A708A Definition Changes
 - Display Changes
- Will Require Weather Radar Changes
 - Possible Hardware (Processing, Antenna, etc...)
 - Software Algorithms
- Retrofit vs Forward Fit Considerations

Direct Lightning Detection (Volcanic Ash Correlation)

What Is It?

- The Addition of a direct lightning detection system to the weather radar pedestal
- The addition of a "Volcano" Database
- Indications on the map of directly detected lightning

No⁻ ligł det

Value

• Er

The contents of this document are proprietary to Rockwell Collins, Inc.

orward Fit Considerations

Vertical Weather Depictions

Uplink Weather with Airborne Weather Merge

Uplink Weather Product Examples

Rockwell Collins

Ground Based Radar Imagery

Next Generation Architectures & Technology

Radar Architecture Trends

Considerations;

- Environmental Ramifications Outside Pressure Vessel (MTBF, MTBUR)
- Access to Radome
- Redundancy on Aircraft (one or two radars)
- Manufacturing Complexity (Waveguide)

Questions?

Rockwell Collins Radar Product Timeline

Rockwell Collins

WP-101, 102 Collins First Airborne WXR Manufacture d in DallasWX-80 15KW Mag 300 nm RageGeneral Aviation Radar Product Fadar Product Digital Introduction WXR-150, 200 Series 2 Box Magnetron Digital Color DisplaysWXR-700X/C Air Transport Product Introduction First All Solid State Transmitter Digital Aircraft Interfaces Coherent Frequency Plan198319871989-19931995WXR- YOXX/C Doppler Turbulence Detection IndustryTWR-850 First Fully Integrated Solid State BRS Radar System forNASA Experimental Research Radar Forward Looking Windshear Research Platform B737 Filght Test AircraftWXR-700X Eroward Looking Windshear Detection Certification	1956-1966 1969		1976-1982	1980	
Image: Coherent Frequency Plan198319871989-19931995198319871989-19931995WXR- 700X/C Doppler Turbulence Detection IndustryTWR-850 First Fully Integrated Solid State BRS Radar System forNASA Experimental Research Radar Forward Looking Windshear Research B737 Flight Test AircraftWXR-700X Forward Looking Windshear Detection Certification	WP-101, 102 Collins First Airborne WXR Manufacture d in Dallas	WX-80 15KW Mag 300 nm Range	General Aviation Radar Product Family Introduction WXR-150, 200 Series WXR-300 Series 2 Box Magnetron Digital Color Displays	WXR-700X/C Air Transport Product Introduction First All Solid State Transmitter Digital Processing Digital Aircraft Interfaces	
WXR- 700X/CTWR-850 First FullyNASA Experimental Research RadarWXR-700X Forward LookingDoppler TurbulenceIntegrated Solid StateForward Looking Windshear Research Platform B737 Flight Test AircraftWXR-700X Forward Looking	1983	1987	1989-1993	Coherent Frequency Plan 1995	
First Beech Starship	WXR- 700X/C Doppler Turbulence Detection Industry First	TWR-850 First Fully Integrated Solid State BRS Radar System for Beech	NASA Experimental Research Radar Forward Looking Windshear Research Platform B737 Flight Test Aircraft	WXR-700X Forward Looking Windshear Detection Certification	

Rockwell Collins Radar Product Timeline

1997 [·]		1999	20	002		2007	
FMR-200 Air-to-Air Skin Paint Mode for KC- 135 Upgrade	TW Pat Atte Cor n ar Gro Clur Sup	<u>R-8xx</u> h enuation npensatio nd ound tter pression	WXR- Radar First Fu Radar Ground Suppre Automa Global Correla	2100 MultiScan Jully Automatic System I Clutter ession atic Tilt, Gain Geographic ation	WRAU Fully Arinc Archit New (Aircra Boein Stand	J-2100 Integrated RF 768 tecture for Generation off g B787 ard	
2009		20	11	2012		Future	
RTA-4100 Next Generation BRS Radar Family		RTA-420 First Forward Looking Windsho Radar fo BRS Mat	00 d ear or rket	WXR-2100 Mult Version 2.0 Automatic Threat Assessment Syster Lightning and Hail Probabilities, Predictive Overflig	: <u>iScan</u> m ht	Advanced Weat Capabilites Advanced Terra Features Forward Looking T Alerting Runway Obstacles Synthetic Vision Augmentation	<u>her</u> iin errai

Rockwell Collins

Radar Product Capabilities (Historical Perspective)

Historical Investments In Radar Have Been Value Based

Cell Region Where Lightning

Generation Begins

Rockwell Collins

Lightning Production - Convective Cell 'Growth' Stage

2. Electrification results from millions of collisions between graupel and ice crystals

3. A small amount of charge is transferred during each collision

4. Graupel charges negative, ice crystals charge positive

Reflectivity Indicator

Cloud Electrification Process

22

© 2011 Rockwell Collins, Inc. All rights reserved. The contents of this document are proprietary to Rockwell Collins, Inc.

'Mature' Cell Development Stage

Cloud Electrification Process

Reflectivity Profile

- Expanded Aircraft Threats
 - Turbulence, Up And Down Drafts
 - Lightning, Core and Anvil
 - Hail

© 2011 Rockwell Collins, Inc. All rights reserved. The contents of this document are proprietary to Rockwell Collins, Inc.

Lightning Threat

- NASA research shows that the majority of lightning strikes occur around the freezing level at 10,000 ft. (see figure)
 - During approach and departure, close transit to cells is often required
 - Many Strikes Triggered By Aircraft Within Electrified Region
- Industry Data Indicates An Average of Several Hundred Thousand Dollars Per Strike

Thunderstorm Reflectivity Characteristics and Geographic Weather Variation

Understanding Reflectivity Characteristics Is Key To Accurately Representing Threats

25

© 2011 Rockwell Collins, Inc. All rights reserved. The contents of this document are proprietary to Rockwell Collins, Inc.

Merger of Aviation Radar and Weather Science

SIXTH FRAMEWORK PROGRAMME

Combining Weather Science and Radar Technology to Provide Threat Detection

Min Gain (-14 db) One and a half color level decrease

CAL Gain (0 db) Standard Rain Rate Reflectivity

Max Gain (+16 db) One and a half color level increase