Segment 6: Turbulence

Friends and Partners of Aviation Weather 1 November 2012

Turbulence Session

Long Term Goals: Increase/Maximize Usable Airspace &

Reduce/Minimize injuries and aircraft damage.

What can be done in the next 12-24 months to move toward this goal?

Topics

- 1. Turbulence Causes, Character & Forecasting for Aviation Presenter: Bob Sharman Team: T.Fahey, T.Farrar, B.Sharman & M.Taylor
- 2. Turbulence Issues for Aviation Decision Makers Presenters: Bill Watts & Matt Tucker Team: M.Fronzak, G. Jarrett, M.Tucker & B.Watts
- 3. Turbulence Measurements & EDR Standardization Presenter Mike Emanuel Team: T.Farrar, M.Fronzak, B.Sharman, M.Taylor, M.Wandishin, S. Catapano & M.Emanuel
- **4. Verification of Turbulence Forecasts**

Presenter: Jennifer Mahoney Team: J.Mahoney, M.Wandishin, B.Sharman, M.Taylor & B.Watts

5. Integration of Turbulence Info

Presenter: Mark Bradley Team: M.Bradley, T.Fahey, M.Fronzak, J.Mahoney, B.Sharman, M.Taylor & M.Tucker

Turbulence Causes, Character, and Forecasting

Scales of Aircraft Turbulence/ Turbulence Intensity Metric (EDR)

Largest eddies: Energy Input

.00s km

Smallest eddies: Energy Dissipation

Aircraft responds to scales from

~100m – 3 km

Scales of Aircraft Turbulence/ Turbulence Intensity Metric (EDR)

Friends and Partners of Aviation Weather Segment 6 source

flow

sink

Scales of Aircraft Turbulence/ Turbulence Intensity Metric (EDR)

- Energy production at largest scales
- Energy dissipation (into heat) at smallest scales. Depends on viscosity.
- ->"Downscale cascade"
- $\varepsilon = \text{Energy dissipation rate at the smallest scales (units of de/dt: m²/s³).$
- Usually energy production at large scales ~ energy dissipation at small scales and ε is nearly constant across scales
- EDR = $\varepsilon^{1/3}$ is used because it is proportional to aircraft loads (0-1 m $^{2/3}$ / s)
- EDR can be calculated <u>exactly</u> at the small scales (but requires very high resolution), <u>approximately</u> at intermediate scales (with some assumptions about 1 Novtheestatistical nature of the turbulence) of Aviation Weather Segment 6

Background Known Turbulence Sources

Background Known Turbulence Sources

Kelvin-Helmholtz Instability

Figure 1-16. Aviation turbulence classifications. This figure is a pictorial summary of the turbulence-producing phenomena that may occur in each turbulence classification.

Source: P. Lester, "Turbulence – A new perspective for pilots," Jeppesends 1994 artners of Aviation Weather

1 November 2012

Segment 6

8

Convective

EDR 45.000

dBZ

Instability

Background <u>Known</u> Turbulence Sources

Particle 1-16. Aviation turbulence classifications. This figure is a pictorial summary of rbulence-producing phenomena that may occur in each turbulence classification.

Source: P. Lester, "Turbulence – A new perspective for pilots," Jeppesen, 1994 Friends and Partners of Aviation Weather

GoldenStateImages.com (C) Randy Morse

Segment 6

Convectively-Induced Turbulence (CIT)

Some turbulence occurs in clear air near cloud (CIT)

FAA avoidance guidelines are inadequate

Example

10 July 1997 near Dickinson, ND. (En-route Seattle to JFK). Boeing 757 encountered severe turbulence while flying above a developing thunderstorm (and between thunderstorms)

FL370 (approx 11 km) 22 injuries. +1 to -1.7 g's in 10 sec

Courtesy Todd Lane, U. Melbourne

Lane and Sharman, JAMC 2008 Friends and Partners of Aviation Weather

1 November 2012

Cloud (colorfill), θ (2-K contour interval), w (1 m/s contour interval; updrafts red, downdrafts, green)

11

Automated Turbulence Forecasting

- Forecast EDR (atmospheric metric)
- Must use operational NWP model forecasts (~10 km)
 - Cannot capture aircraft scale turbulence (~100m)
 - Or gravity waves (~few km)
 - Or in-cloud convection (~ 10-100s m)
 - Does capture large scale turbulence sources -> downscale cascade
 -> aircraft scale turbulence can be inferred
- Compute "turbulence diagnostics" (D) from NWP model output fields (e.g., winds, temperature)
 GTG2 - Turbulence forecast a Valid 1800 UTC Mon 03 May 2010
- Ds are typically related to model spatial variations
- GTG approach: weighted ensemble mean of diagnostics
 GTG (EDR) = W₁D₁ + W₂D₂ + W₃D₃ +
- R&D problems:
 - Develop Ds requires better understanding of turbulence generation processes
 - Calibrate Ds in terms of EDR
 - Determine best way to use multiple diagnostics
 - Develop <u>probabilistic</u> forecast (probability of exceeding a certain EDR value?)

Turbulence <u>nowcast</u> system (GTGN)

Turbulence Problems that Aviation Decision Makers Face

Turbulence Issues for End Users

- ATC & ATM perspective
- Dispatch Perspective
 Preflight-Strategic
 En Route-Tactical
- Flight Attendant Perspective
- Pilot Perspective
- System Drivers

Turbulence Issues for End Users

- Controllers do not have access to turbulence data at the sector.
- PIREPS are entered into the system via sneaker net.
- urgent PIREPS are the only PIREPS that get to the controller regularly at the sector.
- Ride reports are passed from controller to controller as they switch out.
- Altitudes are blocked when multiple reports for the same altitude come back bad or good.

Graphical Turbulence Guidance (GTG) Forecast

Light

Moderate or greater

Dispatchers' Issues

Forecast

- Model Selection
- Forecaster Subjectivity
- Dispatcher / Pilots
 - Tool selection
 - Subjectivity / Risk Considerations
 - Workload drivers

Flight Attendants' Issues

- Insufficient/ incomplete briefing from the flight crew on weather en route e.g. turbulence
- Inability to communicate effectively with flight deck about turbulence in the cabin
- Obligation to continue with service or compliance duties when the seatbelt sign is illuminated
- 300 lb. beverage cart that is a potential hazard
- Passengers disregard instructions and move about the cabin

Pilot Issues

- Current State
 - General forecast Broad in scope
 - PIREPS Wright Brother
 - ATC Chat Room
- Future State Web viewer on a tablet
 - New turbulence metric
 - Existing A/C Sensors + Avionics' box
 - Equals objective atmospheric state
 - Robust Forecast model using new metrics

Drivers

- Safety
 - If everyone is strapped in with carts stowed, NO ONE GETS HURT.
 - Key is not to cry wolf and F/A ignore warnings
- Efficiency/Emissions
 - Assumptions
 - Range of primary variables %, Altitude, Time
- Capacity
 - FAA Focus
- Overall
 - The solutions for all 3 drivers might appear to conflict, but better turbulence knowledge can drive better solutions for all 3.

Turbulence Measurements and EDR Standardization

Presenter: Michael Emanuel

FAA Project Lead, EDRS

Panel: Matt Fronzak, Matt Taylor, Bob Sharman, Matt Wandishin, Sal Catapano

1 November 2012

Turbulence Metrics

- State of Atmosphere
 - Eddy Dissipation Rate (EDR)
 - Aircraft-independent, universal measure of turbulence based on the rate at which energy dissipates in the atmosphere
 - Calculated using a variety of parametric data from aircraft avionics and computational algorithms

Turbulence Metrics

- G-Loads
 - Derived Equivalent Vertical Gust (DEVG) and Root
 Mean Square –Gravity (RMS-g)
 - Impact response for a given aircraft at specific and unique flight conditions
- Pilot Report (PIREP)
 - Voluntary report from a pilot of weather conditions encountered in flight reported to ATC and/or Flight Service

Origin of the In Situ EDR Standards Project

- In 2001, ICAO made EDR the turbulence metric standard
- In 2012, RTCA SC-206, developed an Operational Services and Environmental Definition (OSED) identifying the necessity for:
 - An international effort to develop performance standards for aircraft EDR values, independent of computation approach,
 - To set Minimum Operational Performance Standards (MOPS), and
 - To standardize aircraft EDR databus labels and encoding of EDR parameter values

Origin of the In Situ EDR Standards Project

- In response, the FAA initiated an In Situ EDR Standards Project in July, 2012 that will:
 - Provide the analysis, inputs, and recommendations required to adopt in Situ EDR performance standards
 - Provide supporting research required to adopt standards for EDR value and label definitions
- This project will not score EDR algorithms or calculation approaches

Why In Situ EDR Standards are Needed?

EDR is a calculated metric (not measured)

 Without a standard, differences in algorithmic approach and operational input could lead to unacceptable deviations in resulting EDR values

In Situ EDR Calculation

- Methods of calculation include: winds and vertical acceleration
 - Vertical Wind
 - Input: calculated vertical winds
 - Airlines: Delta and Southwest
 - Horizontal Wind
 - Input: longitudinal wind via true airspeed
 - Airlines: Regional airlines (via TAMDAR program)
 - Vertical Acceleration
 - Input: turbulence level is inferred from aircraft response (indirect method)
 - Airlines: United and American

A literature search has <u>not</u> identified any international *in situ* EDR operational implementations (E-AMDAR/UK Met Office confirmed)²⁸

Segment 6

Project Overview

1 November 2012

Work Element Relationship

Upcoming Events & Collaboration

- AMS Annual Meeting Paper / Briefing January, 2013 will provide details on:
 - approach EDR Standards Project will use to develop standards
 - information learned from EDR Literature Search (e.g. algorithms, applications, implementations)
- Project places a heavy focus on leveraging collaboration opportunities that provide mutual benefits

Focal Points

We would like to invite you to contact us and identify areas of the project for which you would like to offer your expertise

Name	Phone	Email
Michael Emanuel - FAA	609-485-4873	michael.emanuel@faa.gov
Joe Sherry - Exelis	202-651-7533	joseph.sherry@exelisinc.com
Sal Catapano - Exelis	202-651-7545	salvatore.catapano@exelisinc.com

Verification of Turbulence Forecasts

The Need for Forecast Evaluation

Build trust in the quality of turbulence forecasts to allow for an increase in usable airspace and reduce injuries and aircraft damage

Untangling Observations for use in Verification

- Different instruments recording EDR
 - Limits use of data at some altitudes
- Different reporting approaches
 - Impacts categorization of turbulence severities
 - Introduces complexities with defining the event

Measuring Turbulence Events

Event Length Analysis

Forecasts produce turbulence events substantially longer than observed

75% of all observed turbulence runs as measured by EDR are shorter than 17 km

75% forecast (1) turbulence
event length is 229 km
75% forecast (2) event length is
183 km

1 November 2012

Event Comparison

Event Comparison

Event Comparison

Event Comparisons

Distribution event onset errors

Highlights

- Definition of the 'operational weather problem' for aviation provides the foundation for the evaluation
- Forecasts must be translated to a common framework in order to adequately compare quality and accuracies
- Observation datasets need to be deeply investigated for adequate use in an evaluation
- Taking advantage of new observation datasets allows for advancements in methodologies and metrics

Turbulence Integration

1 November 2012

Integration of Turbulence Information

- Reports
 - Collection automated & manual sources
 - Evolution PIREPS (Orville) to A/C sensors
 - Ingesting reports into computer models
- Turbulence Forecasts & Verification
- Distribution of reports or forecasts to users
- Display for decision makers

An Integrated Turbulence Avoidance System

But certainly not perfect

- The Delta weather hazard avoidance system includes 4 components for both <u>preflight</u> planning and <u>en route</u> ops:
- Communication Capabilities (manual and automated text and graphics distribution)
- Avoidance Policies & Procedures

 (implemented jointly by pilots and dispatchers)
- **P**roducts

(automated &/or generated by Delta Meteorology)

 System Familiarization via Training (ongoing process for both users and producers)

Depictions (Preflight) & TPs (En Route)

General Avoidance Policy & Procedures

Future State

- Drivers
 - Safety
 - Efficiency
 - Capacity
- Web viewer on a tablet
 - New turbulence metric
 - Existing A/C Sensors + Avionics' box
 - Equals objective atmospheric state
 - Robust Forecast model using new metrics

