

Federal Aviation Administration

Aviation Weather Research Transition Update

Presented to:	FPAW Meeting
By:	Tom MacPhail, AJP-6850
Date:	Oct 12, 2011

Overview

- AWRP-funded new weather capabilities transitioned to NWS for production and dissemination to NAS users:
 - Turbulence (GTG)
 - In-flight Icing (CIP/FIP)
 - Ceiling & Visibility (CVA)
 - Helicopter Emergency Management System (HEMS)

Other AWRP-funded initiatives:

- CoSPA
- Liquid Water Equivalent (LWE)
- High Ice Water Content (HIWC)
- Model Development & Enhancement (MDE)
- Right-sizing: Flexible Terminal Sensor Network (FTSN)
- Weather integration

Graphical Turbulence Guidance (GTG)

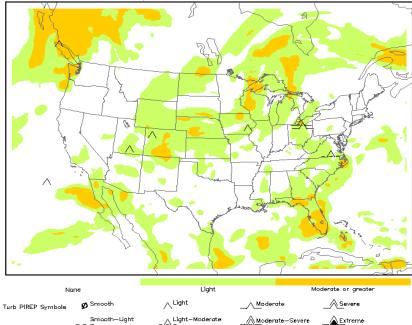
• GTG 2.0 on ADDS

- CONUS+ domain; 10,000 MSL to FL450
- Hourly forecast increment out to 12 hours
- Based on RUC; exploits aircraft EDR data

GTG 2.5 coming soon

- Represents an algorithm update to accommodate WRF-RR
- Release tied to WRF-RR implementation
- No change in product appearance or functionality from GTG 2.0

• GTG 3.0 release in FY13


- Expanded domain to SFC
- Includes mountain wave turbulence
- Exploits expanded aircraft EDR network

Supplementary Weather Product (AIM 7-1-3): Clear-air turbulence forecast only. See FYI/Help page for more information.

GTG2 - Maximum turbulence intensity (10000 ft. MSL to FL450)

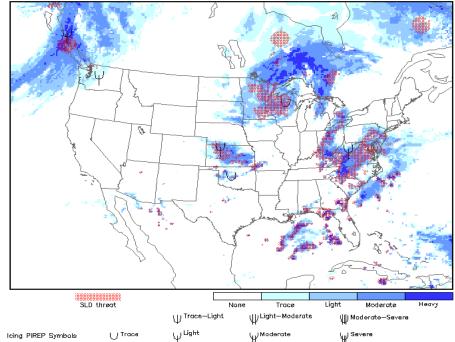
Valid 1800 UTC Wed 21 Sep 2011 00-

RT Update

Current/Forecast Icing Product (CIP/FIP)

CIP/FIP–Severity on ADDS

 Includes current and forecast icing probability and severity


• CIP/FIPS-RR (Rapid Refresh)

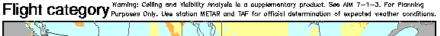
- Algorithm update to accommodate WRF-RR
- Transition to operational ADDS expected 2FY12
- FY13+
 - CIP/FIP-Alaska
 - CIP/FIP-IOC

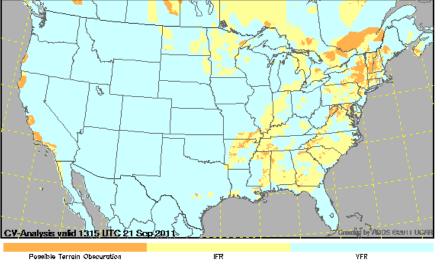
By FAA policy CIP is a Supplementary Weather Product for enhanced situational awareness only and must be used with one or more primary products (safety decision) such as an AIRMET or SIGMET (see AIM 7-1-3).

Maximum icing severity (1000 ft. MSL to FL300)

Analysis valid 1800 UTC Wed 21 Sep 2011

RT Update


Ceiling & Visibility (CV)


CV Analysis (CVA) completed

- Released to AWC in August 2011
- On ADDS by mid-2012

CV Forecast (CVF)

- Partnering with NWS to integrate CVF into existing automated C&V guidance on AWIPS (LAMP)
- Longer-term...NWS-produced national CVA and CVF grids in the 4D Cube for access by NAS users, DSTs, etc.
- Helicopter Emergency Management System (HEMS)
 - Currently uses CVA; disseminated on experimental ADDS
 - Working with AFS-250 to plan migration of HEMS to CVA/F grids via the 4D Cube when available

RT Update

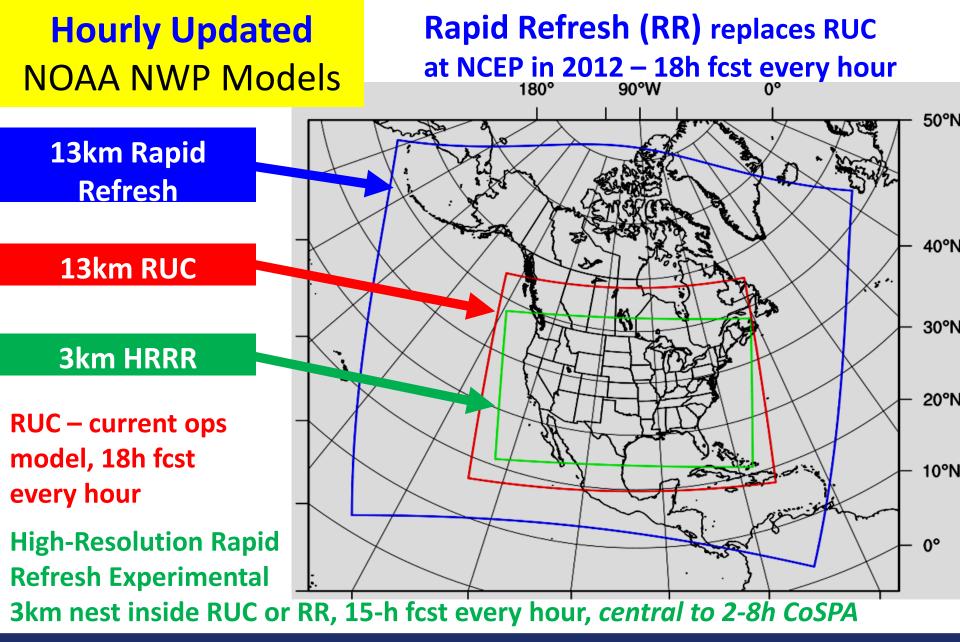
Additional Research Initiatives

Liquid Water Equivalent (LWE)

- FY11: Final report on LWE research including assessment of system performance for SN, FZRA, FZDZ, IP, and frost completed as well as system description and software package
- FY12/13: LWE integrated into Terminal Area Icing Weather Information System (TAIWIS)
 - Freezing rain and freezing drizzle rates
 - Improved supercooled large drops data in the terminal area for new aircraft certified after the new SLD rule
 - Liquid water equivalency for falling and/or accumulating winter precip

RT Update

Additional Research Initiatives


High Ice Water Content (HIWC)

- More than 100 engine events, including stall, flameout, engine damage in HIWC environments
- Field campaign Darwin, Australia to gather data needed for accurate laboratory simulation of HIWC conditions and evaluation of proposed regulatory envelope(s)
 - Trial campaign Feb-Mar 2012
 - Full campaign Jan-Mar 2013
- Initial nowcast & forecast algorithms also ready for field trials

RT Update

RT Update Oct 12, 2011

MDE in 2011

WRF-RR

- Development complete; in queue for implementation
 - Rotated lat-lon coordinates cover Alaska
 - Improved treatment of ice/snow
 - Improved microphysics
 - Enhanced GSI Analysis
 - Improved cloud analysis
 - Use of new/expanded observations (TAMDAR, etc.)
 - Better use of surface obs
 - Use of satellite radiance data

HRRR

- Real-time & retrospective testing on shadow system
 - Use of RR as parent model
 - Reduced latency to 2 HRs
 - Improved microphysics
 - Optimization of time-step selection wrt convective and mountain wave instabilities

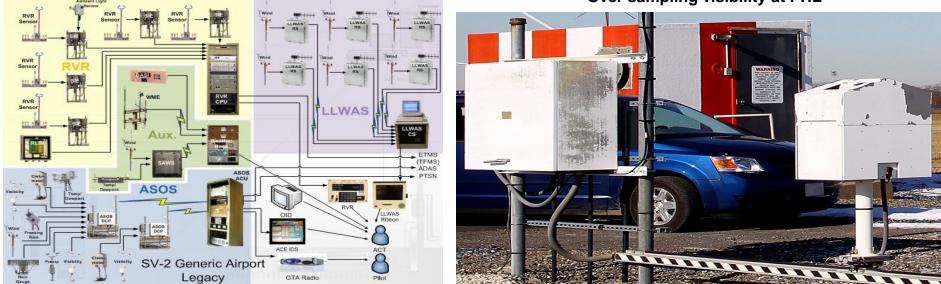
MDE Plans for 2012

- WRF-RR: <u>Implement</u> and continue to improve
- HRRR: Develop, test and improve
- Improve physics in WRF-RR, HRRR and NAM for aviation parameters (icing, turbulence)
- Develop, test & implement improvements to the operational GSI 3DVAR for RR NAM runs
- Commence development of NARRE (6 members at 13km)

Rightsizing the Sensor Network

Flexible Terminal Sensor Network (FTSN)

Current Sensor Network


- Stove-pipe configurations
- Limited data access
- Expensive to maintain
- Limited communications

Generic terminal - ASOS, RVR, LLWAS

- Aging/Obsolete
- Difficult to expand

Over sampling visibility at PHL

Aging equipment at PHL

RT Update

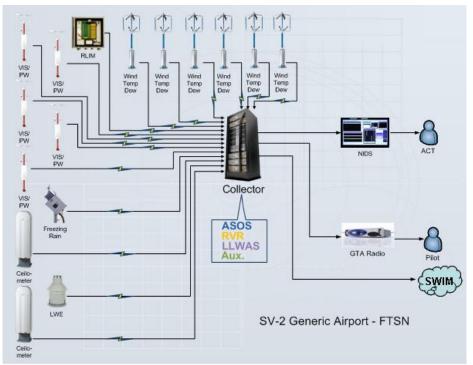
Rightsizing the Sensor Network

Flexible Terminal Sensor Network (FTSN)

- Built with standard processors and operating system
- Drastically reduced acquisition and maintenance costs
- Improves representativeness of critical measurements

<u>Deliverables</u>

- FY11
- Initial FTSN Design Document
- Market Survey of Industry Capabilities


• FY12

- Demonstration of the FTSN Collector
- Terminal Site Survey Process

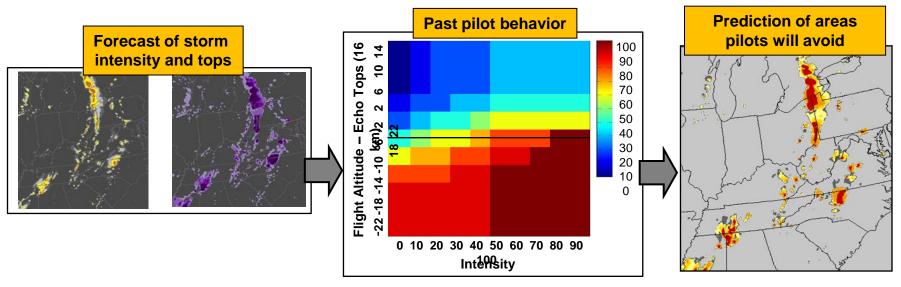
• FY13

Demonstration of FTSN Prototype

- Improved sensor access via 4D cube
- Increases critical reliability and availability
- Open architecture
- Expandable to meet unique needs

FTSN Configuration

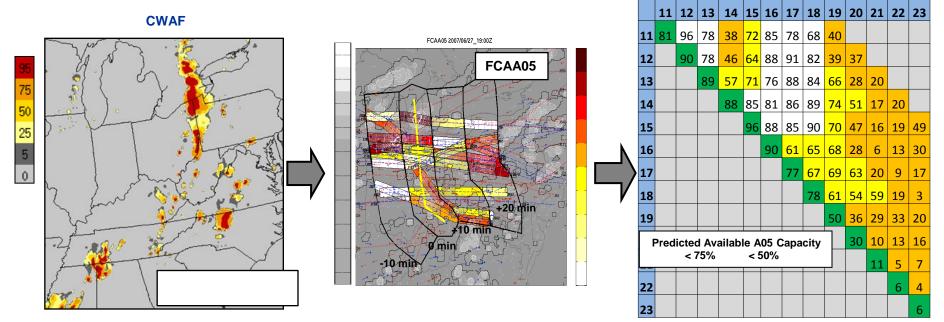
12


RT Update

ATM-Weather Integration

 Translate weather data into operationally-meaningful information to enable integration into ATM decisions

FY11 activities


- Documented wx integration concepts for Time-Based Flow Management (TBFM) and Surface Trajectory-Based Operations (STBO)
- Evaluated technologies for translating weather data into actionable information and down-selected for further investment
- Researched convective weather avoidance fields (CWAF) for terminal area

Collaborative Trajectory Options Program (CTOP)

- Formerly called "SEVEN" being developed by Sys Ops
- Designed to meet requirement to determine a capacity across a Flow Constrained Area (FCA)
- CWAF applied to routes across an FCA predicts FCA capacity in a matrix
 FCA Capacity FCA

FCA Capacity Forecast Matrix

RT Update

QUESTIONS?

RT Update

