Airborne In Situ Weather Observations

Presented to: Friends and Partners of Aviation Weather

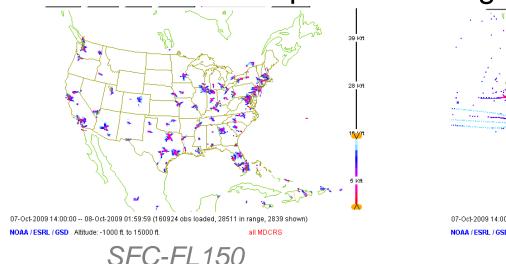
By: Tammy Farrar, FAA Aviation Weather Group

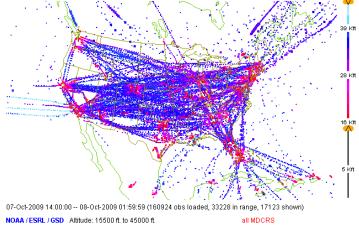
Date: October 22, 2009

Airborne In Situ Weather Observations

- Overview
 - Terminology
 - US program/MDCRS
- FAA Turbulence Detection/EDR Program
 - Delta Airlines EDR Proof of Concept Demo
 - Turbulence Forecasting/GTG2 Development
- Water Vapor Sensing System II
- Future Plans

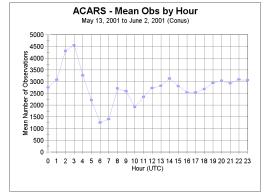
Airborne In Situ Weather Observations Terminology


- AMDAR Aircraft Meteorological DAta and Relay: A WMO-sanctioned international program of nations with air carriers that provide automated weather observations.
- MDCRS Meteorological Data Collection and Reporting System: US analog of AMDAR, a private/public partnership.
- **ACARS** <u>Aircraft Communications</u>, <u>Addressing</u>, and <u>Reporting System: The name of a datalink service provided by Aeronautical Radio, Inc. (ARINC) that sends information between aircraft and ground stations.</u>
- TAMDAR Tropospheric Airborne Meteorological DAta Reporting: "AirDat's network of patented airborne sensors...which provide a continuous stream of real time observations....". (http://www.airdat.com/./index.php)


Airborne In Situ Weather Observations MDCRS

- Participants
 - AAL, SWA, FedEx, UAL, UPS, DAL/NWA
 - NOAA, FAA
- > 1500 reporting aircraft
- > 100,000 observations/day, >3 million/month
- Much more cost effective than individual radiosonde soundings

MDCRS Optimization



FL150-400

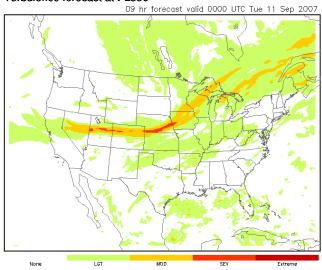
•The selection of specific aircraft to obtain the data required to meet the government's forecasting needs while reducing redundant or unnecessary observations that increase communications and processing costs.

Temporal Coverage

Airborne In Situ Weather Observations Turbulence Detection/EDR Program

- FAA Aviation Weather Research Program developed EDR algorithms
- Current Deployment
 - UAL: Accelerometer-based algorithm on ~19 737's and ~97 757's
 - DAL: Improved winds-based algorithm on ~80 737-700/800's
 - SWA: Winds-based algorithm currently on 8 737-700's for testing.
 Planned 2010 deployment on 340 total aircraft.
- UAL and DAL EDR data displayed on Aviation Digital Data Service (ADDS) In Situ Turbulence Viewer
 - Access restricted to participating airlines at this time

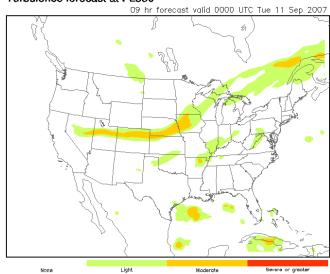
Airborne In Situ Weather Observations Delta Airlines EDR Proof of Concept Demo


- Goals
 - To document how EDR usage results in increased airspace capacity by minimizing unnecessary deviations around turbulence
 - To gain experience with the data integration and dissemination issues that the NextGen era will present
 - To verify and document improvements in airline operations
- Demo kick-off in May 09, operational data collection begun Sep 09
- Anecdotal evidence of positive impact on NAS capacity and flight ops
 - 10/6/09: B757 experienced choppy conditions. Pilot requested change in altitude, ATC provided recommendation. EDR data showed smooth air 4000 ft closer to target altitude than ATC recommendation, dispatcher relayed to pilot. Result 30 minutes shorter time off target altitude

Airborne In Situ Weather Observations GTG2 Development

GTG

The GTG is an automatically—generated turbulence forecast product that supplements AIRMETs and SIGMETs by identifying areas of turbulence. The GTG is not a substitute for turbulence information contained


Turbulence forecast at FL330

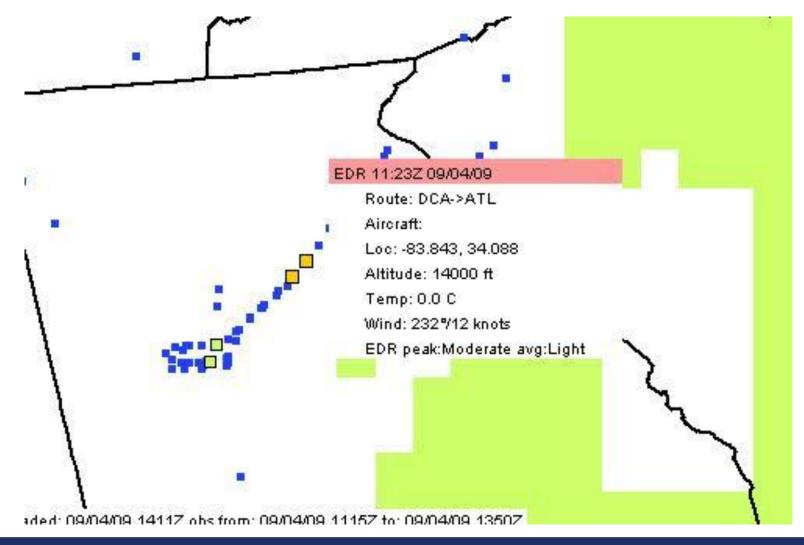
GTG2

The GTG is an automatically—generated turbulence forecast product that supplements AIRMETs and SIMGETs by identifying areas of turbulence. The GTG is not a substitute for turbulence information contained in AIRMETs and SIGMETs. It is authorized for operational use by meteorologists and dispotchers.

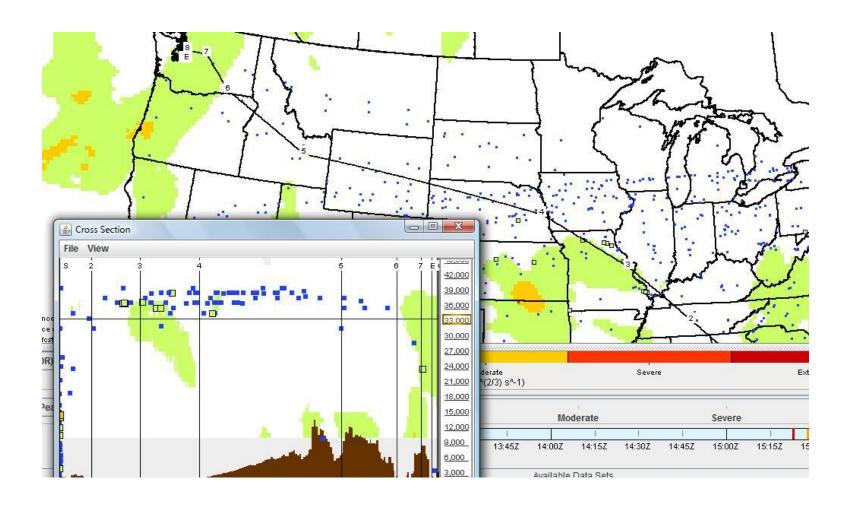
Turbulence forecast at FL330

- GTG2 incorporates EDR observations
- •GTG2 expected operational at AWC early 2010

Airborne In Situ Weather Observations Water Vapor Sensing System II

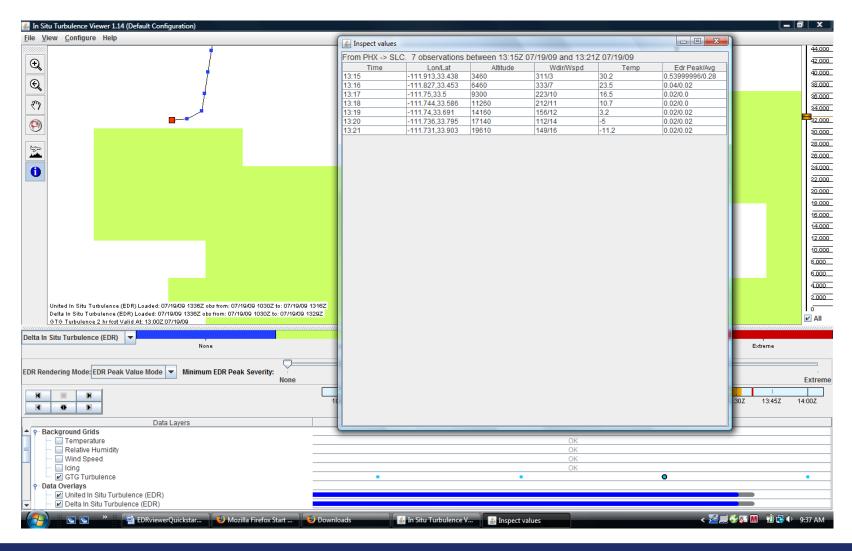

- Sensor re-design in 2008
- UPS: Replacement of old sensors on 757s on-going,
 ~5 new sensors flying
- SWA: Awaiting certification to proceed with implementation
- Field test scheduled for late October 2009
- Long-range goal 400 sensors flying by 2016

Airborne In Situ Weather Observations The Future


- In Situ Strategy Plan is work in progress
 - MDCRS Management Team
 - Government (FAA/NOAA)
 - Airlines, Aviation Industry
- Issues
 - Optimization
 - Goal of free and open data access
 - Standardization of formats
 - Accommodation of new data types and sources
 - Funding (government vs. industry)

Back Up Slides

ADDS In Situ EDR Viewer


EDR Viewer Flight Path Tool

DAL Dispatch EDR Feedback Form

Flight #/ Aircraft type	Date/Time	Target Altitude	Flt Altitude Change	Distance/time off alt. & Comments	Impact of EDR on altitude change
Flt#	Date: Time:		b Pilot requested change b Pilot reported change b Flight plan change by OCC b Change observed by OCC		Requested alt. change not needed after EDR info reviewed Alt. change closer to target alt. (How much closer?ft) Shorter time/distance off altitude (How much shorter?) Alt. change during flight planning EDR info had no impact on altitude change.

EDR Wake Vortex Incident

Projected GTG releases – next 7 years (updated)

Version	Capabilities	Op. date			
GTG1	Upper levels	3/2003			
	RUC20				
GTG2	Improved GTG1	Early 2010			
	Mid levels				
	Uses in situ				
GTG3a	Improved GTG2	????			
	RUC-based				
	MWT				
	Optimized insitu				
GTG3b	Improved GTG3a				
	13 km WRF RR (pre-impl 08, fin	al early 10)			
	All altitudes	FY11			
GTGN1	NTDA2/DCIT	FY11			
	in situ NextGen IOC v	orcions			
	GIGSD	ersions			
	> 10,000 ft				
GTG4	Improved GTG3b	FY14			
	Ensembles/Probabilistic foreca				
	out-of-cloud turb (CIT) forecast				
GTGN2	NTDA2	FY14			
	GTG5				
	all altitudes				
GTG5	Improved GTG4	FY16			
	Ensembles/floating high res grids				

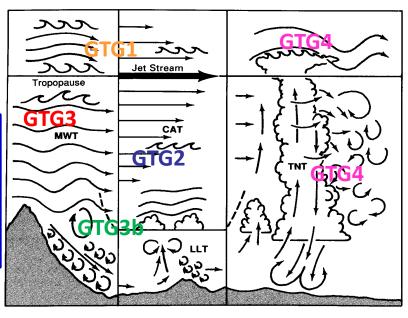
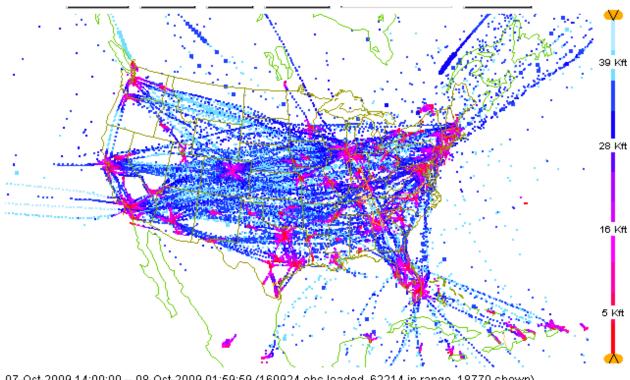
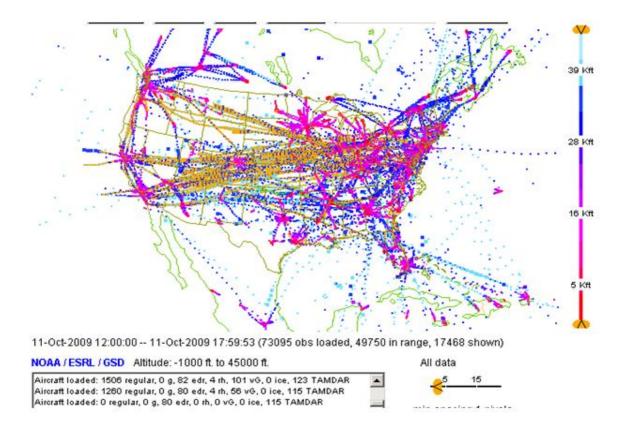



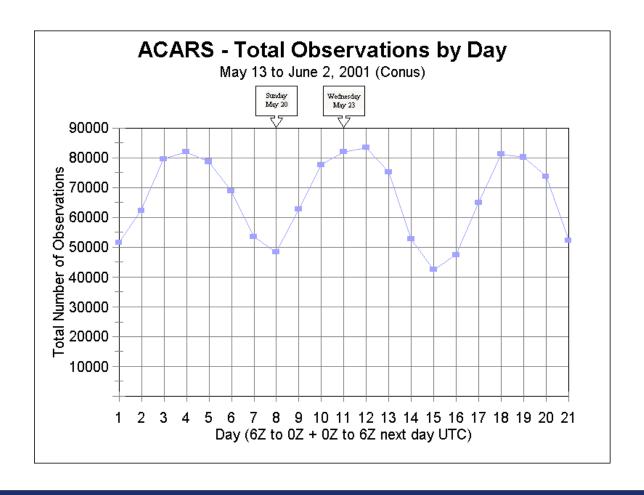
Figure 1-16. Aviation turbulence classifications. This figure is a pictorial summary of the turbulence-producing phenomena that may occur in each turbulence classification.

Source: P. Lester, "Turbulence – A new perspective for pilots," Jeppesen, 1994

MDCRS Coverage

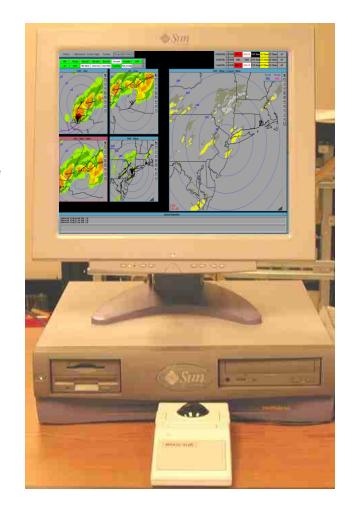


07-Oct-2009 14:00:00 -- 08-Oct-2009 01:59:59 (160924 obs loaded, 62214 in range, 18770 shown)


NOAA / ESRL / GSD Altitude: -1000 ft. to 45000 ft.

all MDCRS

ACARS Coverage


MDCRS Temporal Coverage

Airborne In Situ Weather Observations Current Use

Integrated Terminal Weather System (ITWS)

- Fully automated, integrated terminal weather information system
- Uses sophisticated algorithms to integrate data from FAA and NWS sensors, radars, weather models, and <u>from aircraft in flight</u>
- Users: FAA (TRACON, ATCT, ARTCC, ATCSCC), airport authorities, airline dispatch offices

