# Satellite Cloud & Icing Products at NASA Langley Research Center

Patrick Minnis NASA Langley Research Center Hampton, VA patrick.minnis-1@nasa.gov

Friends/Partner in Aviation Weather Forum NBAA Convention, Atlanta, Georgia September 27, 2007



Langley Cloud And Radiation Group

## OBJECTIVE

- Develop operational near-real-time satellite-derived cloud & icing products
  - for integration into the Current Icing Potential & Forecast Icing Potential products
  - for assimilation into RUC
  - for possible use as a cockpit product



Langley Cloud And Radiation Group

### APPROACH

- Apply cloud retrieval algorithms to half-hourly 4-km GOES imagery
  - cover CONUS with 2 satellites
  - relate cloud properties to known icing conditions
- Validate cloud & icing products w/ in situ & sfc remote sensing data
  - compare in situ, surface, & satellite µ-physical properties
  - compare cloud-base top & height for icing clouds with a/c altitude, radar, ASOS ceilometer data
  - determine where & when icing routine fails (PIREPS)
- Improve cloud & icing products
  - visual assessment, updating, & upgrading
  - respond to results of validations
  - adjust definitions of icing based on objective criteria



Langley Cloud And Radiation Group

## DATA

## CONUS

• GOES-10/12 imager (4-km, 15-30 min)

N & S America

• Rapid Update Cycle (RUC 13-km => 1°, 1/hr)

- T(sfc), T(z), RH(z), u(z), v(z)
- 1-hr forecast for GOES real time processing
- reanalysis for MODIS, AVHRR processing & GOES reprocess

| Other Areas                         |                        |
|-------------------------------------|------------------------|
|                                     |                        |
| • Terra & Aqua MODIS (1-km, 1/day)  | Global                 |
| • NOAA-16/18 AVHRR (1-km, 1/day)    | Select areas           |
|                                     |                        |
| Meteosat SEVIRI (3-km, half hourly) | Eur./Africa            |
|                                     |                        |
| • MTSAT-1 (5-km, hourly)            | E. Asia/Austral./W Pac |
| Langley Cloud And Radiation Gro     | oup                    |

### SATELLITE PIXEL LEVEL CLOUD PROPERTIES

| • CLEAR or CLOUDY                |                                                                  |
|----------------------------------|------------------------------------------------------------------|
| • EFFECTIVE RADIATING TEMP       | Тс                                                               |
| • EFFECTIVE HEIGHT, PRESSURE     | Zc, pc                                                           |
| • TOP/BASE PRESSURE & HEIGHT     | $\mathbf{p}_{t}, \mathbf{p}_{b}, \mathbf{Z}_{t}, \mathbf{Z}_{b}$ |
| • THICKNESS                      | h                                                                |
| • PHASE (0 - 2)                  | Р                                                                |
| • EMISSIVITY                     | 3                                                                |
| • WATER DROPLET EFFECTIVE RADIUS | re                                                               |
| • OPTICAL DEPTH                  | τ                                                                |
| • LIQUID WATER PATH              | LWP                                                              |
| • ICE EFFECTIVE DIAMETER         | De                                                               |
| • ICE WATER PATH                 | IWP                                                              |
| ICING POTENTIAL                  | IP                                                               |



Langley Cloud And Radiation Group

# AIRCRAFT ICING

### **ICING CONDITIONS ARE DETERMINED BY CLOUD**

- liquid water content, *LWC*
- temperature, T(z)
- droplet size distribution, *N*(*r*)

positive w/ intensity negative w/ intensity *r* positive w/ intensity

## SATELLITE REMOTE SENSING CAN DETERMINE CLOUD

- optical depth,  $\tau$
- effective droplet size, re
- liquid water path, LWP
- cloud top temperature, Tc
- thickness, h

### **IN CERTAIN CIRCUMSTANCES**



Langley Cloud And Radiation Group

## **CLOUD PRODUCTS VS. ICING PARAMETERS**

• LWP = LWC \* h

• re = f[N(r)]

- *Tc* & *h* can yield depth of freezing layer
- $z_t$  is top of icing layer

• cloud base height (ceiling) =  $z_t - h$ 

IN MANY CASES, SATELLITE REMOTE SENSING SHOULD PROVIDE ICING INFORMATION



Langley Cloud And Radiation Group



### **CURRENT STATUS OF GOES PROCESSING**

### • GOES-10 & 12 analyzed each half hour, 18°N - 55°N

- G10: <u>85°W 135°W</u> G12: <u>65°W 105°W</u>
- 8-km (every other line & pixel)
- 30-min delay
- Algorithm continually undergoing changes
  - cloud detection
    - new thresholds (especially night & twilight)
    - debugging (input errors, off switches, etc.)
    - multilayered clouds
  - phase selection
    - debugging
    - altered logic



Langley Cloud And Radiation Group

#### Satellite Imagery And Cloud Products Page

Real-time and Historical Cloud Product Loops: The cloud products are derived with VISST/SIST algorithm. Select a domain from the table below to access the real-time (blue cells) and archived products. Java Applet (JV Applet) may not work on some Mac browsers, then use non-iava version.

| Viewers/Tools:                   | CLOUD PRODUCTS                     |                                  |                      |                     |                                       |
|----------------------------------|------------------------------------|----------------------------------|----------------------|---------------------|---------------------------------------|
| MODIS Viewer                     | GOES WEST                          | GOES EAST                        | MODIS<br>TERRA/AQUA  | MTSAT-1R            | NOAA<br>15/16/17<br>and MSG           |
| D-Atlantic NEXRAD                | West CONUS<br>non-java JV Applet   | East CONUS<br>non-java JV Applet |                      | NAURU<br>JV Applet  | ARM-NSA<br>JV Applet                  |
| Angles Viewer<br>ot RUC Sounding | MERGED CONUS<br>non-java JV Applet |                                  |                      | MANUS<br>JV Applet  | WEST<br>EUROPE<br>JV Applet           |
| te Overpass Predictor            | ARM-SGP<br>JV Applet               | ARM-SGP<br>JV Applet             | ARM-SGP<br>JV Applet | DARWIN<br>JV Applet | New!<br>MSG<br>FULL-DISK<br>JV Applet |
| ield Experiments:                | ARM-NSA<br>JV Applet               | COVE<br>JV Applet                | COVE<br>JV Applet    | TWP<br>JV Applet    | ARM-NIAMEY                            |
| C4 2007 New! !                   | Monterey<br>JV Applet              | ATReC/AIRS<br>JV Applet          |                      |                     | EUROPE<br>JV Applet                   |
| COPS 2007                        |                                    | CRYSTAL<br>JV Applet             |                      |                     | ATReC/AIRS                            |
| FRAM 2007<br>CCVEX 2006          |                                    | OHIO<br>JV Applet                |                      |                     | TWP                                   |

Real-time and Historical Satellite Imagery Loops: The links from the table below provide access to the real-time (blue cells) and historical image loops for various satellites.

|                              | SAT                       | ELLITE IMAGERY               |                           |                                     |
|------------------------------|---------------------------|------------------------------|---------------------------|-------------------------------------|
| Mid-West US (SGP)            | Northeast US<br>JV Applet | Mid-Atlantic US<br>JV Applet | Southeast US<br>JV Applet | CONUS<br>JV Applet                  |
| E. Pacific G-12<br>JV Applet | Pacific/West<br>JV Applet | TWPICE MTSAT                 | TWPICE FY2C               | TWPICE<br>MTSAT & FY20<br>JV Applet |
| ATReC GOES-12                | Florida<br>JV Applet      | TWP GOES-9<br>JV Applet      | GMS-5 TWP                 | PACS EPIC                           |
| MASRAD<br>JV Applet          | AVHRR CONUS               | MODIS CONUS                  | AVHRR NSA                 |                                     |
|                              | FULL-DISK SA              |                              |                           |                                     |
| GOES-W FD                    | GOES-E FD<br>JV Applet    | MET-9/0E FD<br>JV Applet     | MET-7/57E FD<br>JV Applet | FY2C/105E FE                        |
| MTSAT/140E FD<br>JV Applet   |                           |                              |                           |                                     |
|                              | COMPOSITE SA              |                              |                           |                                     |
| Global Geostationary         | North Pole MODIS          | South Pole MODIS             |                           |                                     |

#### Langley Cloud And Radiation Group

http://www-angler.larc.nasa.gov/satimage/products.html



User Warning, Please read Site Map:

Minnis Group Homepage

MASRAD Pt. Reves MIDCIX 2004 MPACE 2004 INTEX-NA ATReC 2003 THORPEX CRYSTAL ARM SGP CLAMS INCA Spring 2000 SAFARI 2000 FIRE Arctic (1999)

NOAA AVHRR MODIS Vie MID-Atlantic N ARM-SGP NE Angles View Plot RUC Sou Gridded VISST F Satellite Overpas: Field Experin TC4 2007 N PACDEX 20 COPS 20 FRAM 200 COVEX 20 **TWP-ICE 2006** 



#### Langley Cloud And Radiation Group



#### Langley Cloud And Radiation Group

### Example of G10/G12 Products, 1615 UTC, 12 April 2005





### Merged G10/G12 Phase, 1615 UTC, 12 April 2005



mup.//www-angler.iaic.nasa.gov/salimage/products.mini

## G10/G12 Icing Related Products, 1615 UTC, 12 April 2005



## GOES OUTPUT IS A 3-D FIELD, ALBEIT SOMEWHAT CRUDE





## VALIDATION

- VISUAL: Compare images with results
- PIREPS: Generally good comparisons
  - LaRC past & NCAR (Politovich talk)
- In situ: Generally good comparisons
  - TAMDAR, ATRECS, AIRS-II
- Ceilometer: Cloud base RMS ~ 0.8 km
  - **Cloud detection, excellent**
- Sfc LWP: Generally unbiased except at high end (SGP)
- Sfc radar: Cloud top generally unbiased, RMS ~ 0.8 km

Langley Cloud And Radiation Group



Comparison of cloud base heights from GOES retrievals & ASOS ceilometer data 1900 UTC, 18 March 2004



## **Multilayered Cloud Detection & Retrieval**

### 1815 UTC, 25 July, 2007



### **Magenta denotes Ci over low clouds**



## **Multilayer detection reduces indeterminate areas!**



Langley Cloud And Radiation Group

## **Future Plans**

- Test new RUC versions
- Continue validation
- Assess errors in nocturnal icing estimates
- Finalize overlap detection (remove false supercooled) & retrieval of low clouds underneath cirrus
- Optimize on Columbia Supercomputer

=> lag time < 15 minutes

## For product viewing & download:

http://www-angler.larc.nasa.gov/satimage/products.html



Langley Cloud And Radiation Group