FAA Aircraft Icing Research at the FAA Tech Center, AJP-6350

Friends/Partner in Aviation Weather Forum

NBAA Convention, Atlanta, GA

Presented to: Progress in Icing & Winter Wx Information By: Jim Riley, FAA Aircraft Icing Research Lead Date: Sept. 27, 2007

Federal Aviation Administration

Overview of FAA Aircraft Icing Research

- In-Flight Primarily in support of Certification Service
 - Characterization of Atmospheric Icing Conditions
 - Simulation of Aircraft Icing Conditions
 - Determination of Critical Ice Shapes
- Ground Operations in Icing Conditions Primarily in support of Flight Standards Service
 - Methods for determination of holdover times
 - Allowance times
 - Assess/develop new technology
- Weather Information for Ground Operations in Icing Conditions

Holdover and allowance times based on current weather conditions

- Examples of Holdover Time (HOT), undiluted Type IV fluid
 - Temperature = 25°F
 - Snow
 - Light -> HOT = 40 minutes
 - Moderate -> HOT = 20 minutes
- Examples of Allowance Time (AT), undiluted Type IV fluid
 - Temperature = 20°F
 - Ice pellets
 - Light -> AT = 30 minutes
 - Moderate -> AT = 10 minutes

Precipitation Intensity

- Intensities for fluid endurance time testing are based on liquid water equivalent (LWE) rates measured using glycol pans (*ref.: SAE* ARP 5485)
- In operations, airlines rely on reported visibility and intensity tables
- NWS: .25 mi .50 mi
- heavy moderate light
- FAA: Thresholds vary with temperatue (above or below 30°F) and light (day/night)

Ground Icing Weather Information Project

- NCAR
- FAA Icing Research Program, AJP-6350
- FAA Flight Standards, AFS-200
- Provide precipitation type and intensities based on LWE rates in operations for more accurate use of holdover and allowance times
- Current conditions, nowcasting, forecasting

Winter 2007-2008

- Focus on Snow
- 4 airports
 - Pittsburgh
 - Denver
 - Minneapolis/St. Paul
 - Chicago O'Hare

If EF is used for LWE rates from GEODFIR, what is effect on results?

- EF = Wind Efficiency Factor
- Analysis is done for three cases
 - No EF (Just presented)
 - EF with Terminal Velocity (Vt) = 1.5 m/s
 - EF with Terminal Velocity (Vt) = 1.0 m/s

Wind Enhancement Factor (E.F.)

- E.F. = $cos(\theta) + sin(\theta)^*(Hwspd/VT)$
 - $-(\theta)$ = angle of inclination = 10 deg
 - Hwspd = Horizontal Wind Speed
 - <u>Measured</u> operationally
 - VT = Terminal Velocity of Snow Flakes
 - Must be <u>assumed</u>
- Presented in paper by Rasmussen, et. al., 2000

Wind Enhancement Factor (E.F.)

Effect of use of EF -Rest of presentation involves:

- Fax, pp. 6 & 7.
- IntensitySmry2.xls
- Jan5I3T4E0C.xls No EF
- Jan5I3T4E1C.xls EF for Vt = 1.5 m/s
- Jan5I3T4E2C.xls EF for Vt = 1.0 m/s
- Need to have all 4 files open, will be some jumping around

Effect of use of EF on conclusions for NWS Visibility Table

• 1. No EF

Based on totals. Can differ in some respects for a particular day, e.g., Jan 5, 2007.

- Does not agree well with GEODFIR. ^{5,}
- Strongly non-conservative.

• 2. EF for Vt = 1.5 m/s

- Agreement worse
- More non-conservative.

• 3. EF for Vt = 1.0 m/s

- Agreement: about same as 2.
- Non-conservative: about same as 2.

Effect of use of EF on conclusions for NWS Visibility Table

• 1. No EF

- Does not agree well with GEODFIR.
- Based on totals. Can differ in some respects for a particular day, e.g., Jan 5, 2007.

- Strongly non-conservative.

• 2. EF for Vt = 1.5 m/s

- Agreement worse
- More non-conservative.

• 3. EF for Vt = 1.0 m/s

- Agreement: about same as 2.
- Non-conservative: about same as 2.

Effect of use of EF on conclusions for FAA Visibility Table

• 1. No EF

- Does not agree well with GEODFIR.
- Strongly conservative.

• 2. EF for Vt = 1.5 m/s

- Agreement improves.
- About equally conservative/non-conservative.

• 3. EF for Vt = 1.0 m/s

- Agreement: about same as 2.
- Non-conservative: about same as 2.

Concluding Remarks

• Need pan data from Marshall site to further examine validity of EF.

