## Segment 4:

# Progress in Strategic Convective Weather Info for ATM in Complex Airspace

#### Friends/Partners Aviation Weather Orlando, FL 11 November 2005



NORTHWEST AIRLINES.

Tom Fahey, Mgr. Meteorology Northwest Airlines

## Comments on 2 Topics

- CDM Steering Group (CSG) Directives
- Wind Shear Info

### **Collaborative Convective Forecast Product**

- Progress
  - Intuitive Format introduced March 2005

### Additional Opportunities

- CDM Steering Group (CSG) Directives
  - Define New Terminal Area Convection Fcst Product
  - Focus on CCFP Granularity & Verification

## **CCFP** Definitions

Source: Statement of User Needs - CCFP 2005

<u>CCFP Purpose</u> (Section 1.1):

"...to be used for strategic planning of air traffic flow management during the **en route** phase of flight. It is **not intended to be used for traffic flow control in the airport terminal environment**, ..."

*CCFP Minimum Threshold* (Section 2.1):

• Polygon of at Least 3000 sq. miles that contains:

#### **Coverage**

- Composite reflectivity of at least 40dbZ is expected to cover at least 25% of the forecast area, and
- Echo top of 25,000 feet Mean Sea Level (MSL), or greater, are expected to cover at least 25% of the forecast area, and

#### **Confidence**

• A confidence of at least 25% that above 2 minimum criteria will be met.

### CSG Recommendation -Psbl Implementation

- New Terminal Area Product
- CCFP Granularity
  - •Is 3000 sq. miles the correct threshold?
    - •In the Airport Terminal Environment?
    - •In the En Route Environment?
  - •3000 sq miles of what?
    - •Level 3 or higher Reflectivity? 4km squares or

•Traffic Impacted Areas? - 40nm diameter circles

#### Specific Opportunities

Develop a Terminal Environment ProductFurther Define En Route Threshold

## Convection 22Jun05 @17Z Green = 4km squares of Level 3 & Higher Wx Radar Reflectivity



Answer: LESS- Approx 2000 sq miles



## Same Convection 22Jun05 @ 17Z 3 shades of Green =

40nm diameter circles w/ Solid, Bkn or Sct coverage



recost Systems Laboratory (OAR/NOAA)

### CSG Recommendation -Psbl Implementation •Verification

-Measurements of Both VALUE & ACCURACY

### Value

Measurements of CCFP Value for Decisions by Airspace Users

#### Accuracy

Measurements of CCFP Accuracy for Producers (Meteorologists)

#### Specific Opportunities

- Continue Efforts on Accuracy Measures
- Initiate Maximum Tops Verification
- Initiate Measurements of CCFP Value

## Wind Shear

- Progress
  - Observation/Detection Capabilities

#### Additional Opportunities

- Observation/Detection Capability
  - Dry regime (Wind Shear w/ Weak or No Convection)
- Distribution
  - Access to Graphics
  - Access to Text Advisories

## Wind Shear

## **Current** Observation Capability

- Current: Human-in-the-Loop
  - Pilot Reports to ATC after Encountered (PIREP)
- Current: Automated
  - 117 U. S. Airports w/ Ground Based Detection
    - 43 Airports: Terminal Doppler Weather Radar (TDWR)
      - 11 of 43 Upgraded to Integrated Terminal Weather System (ITWS)
    - 40 Airports: Low Level Windshear Advisory System (LLWAS)
    - 34 Airports: Weather System Processor (WSP)

## ITWS Display with Wind Shear Identified



## Wind Shear Hazard Info - Distribution

| At 43 Airports w/ TDWR                                                                                       | At 117 Airports                                                                             |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Avail. to Pilots & AOC's                                                                                     | Runway Specific Info                                                                        |  |
| Via TWIP                                                                                                     | Relayed By ATC to A/C                                                                       |  |
| <pre>KMSP 2013<br/>ITWS TERMINAL WX<br/>*WIND SHEAR ALERTS<br/>20 KT LOSS<br/>BEGAN 2006<br/>-STORM(S)</pre> | 204-22-30R-30L<br>AW CALM<br>04 A WSA 15K- 2MF<br>04 D<br>22 A<br>22 D WSA 15K- 1MD<br>30RA |  |
| Automated Distribution                                                                                       | Human-In-Loop                                                                               |  |
| Text - No Graphics                                                                                           | Distribution                                                                                |  |

# Conclusions Future Opportunities Weather Info for ATM in Complex Airspace

- •CCFP Verification & Value
- •Additional Definition CCFP Minimum Threshold
- •Definition of a Terminal Environment Product
- •Wind Shear Information Distribution
- •Wind Shear Detection Capability

#### Supporting Slides Use only if requested & Time available

# Convection 22Jun05 @19Z

Green =

4km squares of Level 3 & Higher Wx Radar Reflectivity



### Same Convection 22Jun05 @19Z 3 shades of Green =

40nm diameter circles w/ Solid, Bkn or Sct coverage



## **2** Convection Related Topics

| Details              | CCFP                  | Wind Shear        |
|----------------------|-----------------------|-------------------|
| Product Type         | Forecast: 2,4 & 6 Hrs | Observation       |
| <b>Update Period</b> | Every 2 Hours         | Every 1 Minute    |
| Production           | Human-In-Loop         | Automated         |
| Avoiding             | Congested Air Traffic | Ground Proximity  |
| Distribution         |                       |                   |
| -Automated           | Graphics via Web      | via TWIP          |
| -Human-in-Loop       | Posting by AWC        | Verbally by Tower |
| Purpose              | Efficiency            | Safety            |

# In Situ Turbc Sensing & Reporting Concept of Use

- Progress
  - FAA 18 Month Project & Document Drafted

#### Additional Clarification

- Air Traffic & Operator Roles in Turbc Avoidance
- Add Human-in-Loop Forecasting Systems (e.g. EWINS)
- Add Turbc Reporting Methods
  - Operator Automated as well as Manual Reporting to WMSCR
  - Operator initiated uplinks to A/C