

ADS-B WX UPDATE STEVE DARR – DYNAMIC AEROSPACE

Putting first-things first...

I SINCERELY HOPE THAT YOU AND YOURS ARE WELL, AND STAY THAT WAY. I LOOK FORWARD TO SEEING EACH OF YOU AT THE FALL FPAW.

Developments in ADS-B Wx

• December 2019

- AOPA reported to RTCA SC-206 that General Aviation aircraft equipage with 1090 MHz Extended Squitter ADS-B (1090ES ADS-B) devices exceeds 80% of total GA equipage
- RTCA SC-206 asked whether 1090ES ADS-B could support ADS-B PIREP downlink? (SC-206 had been planning to pursue UAT ADS-B PIREP downlink only)
 - RTCA/EUROCAE Combined Surveillance Committee (CSC) Weather Surveillance Sub-Group (WxS SG) Chair asserted technical feasibility, coordinated with stakeholders to establish support
- January 2020
 - CSC WxS SG Chair developed and presented ADS-B PIREP requirements to CSC, in conjunction with ADS-B AIREP requirements and appendix
 - CSC agreed to allow development of ADS-B PIREP test procedures and appendix, following completion of ADS-B AIREP test procedure development
- February 2020
 - WxS SG submitted complete ADS-B AIREP and PIREP requirements, test procedures, and appendices for inclusion in 1090 MHz ADS-B MOPS
- 20 March 2020: 1090ES ADS-B MOPS is approved for Final Review and Comment

- Using aircraft as weather observation platforms has a long history, beginning with Pilot Reports (PIREPs) and continuing into automated Aircraft Reports (AIREPs)
- ADS-B Weather (ADS-B Wx) is part of ADS-B Version 3 (V3)
 - AIREP enables fully-automated, routine broadcast of aircraftsensed data or data computed onboard
 - PIREP enables ADS-B submission of pilot-observed weather
- ADS-B ground receiver network is operating and updates are planned for reception and distribution of ADS-B V3 messages
 - No mandate for ADS-B V3 aircraft equipage is planned

The Future, with ADS-B Wx

ADS-Wx AIREP Impacts

- More accurate, more precise weather forecasts
- More rapid, more accurate weather awareness
- Improved avoidance of hazardous weather

ADS-Wx PIREP Impacts

- More PIREPs with fewer errors
- ATC/FSS-independent, fully automated:
 - PIREP data submission
 - PIREP encoding
- Continued PIREP dissemination via existing networks
- AIREP impacts where PIREPs are submitted

• Air Traffic

- Routine weather surveillance ^{1,2} and hazardous weather detection and avoidance ^{1,2}
- Interval management 1,2
- Traffic awareness ²
- Wake Turbulence
 - Hazardous wake avoidance in en route and terminal airspace 1,2
 - Wake surfing ²
 - Wake Encounter Reporting (with ADS-B PIREP)
- Weather Forecasting ¹
 - Rapid-update observations enable rapid-update forecasts
 - Forecast validation
 - Forecast skill improvements
 - NWP model performance improvements
 - Improved hazardous weather detection and prediction
 - Forecast feature-size reductions, e.g. icing, turbulence

¹ Ground-based

² Flight Deck-based

	Weather State Message 2.2 [s] Broadcast Interval	Emergency/Priority Status Message 5.0 [s] Broadcast interval	Aircraft State Message 5.0 [s] Broadcast Interval
1	Icing Status	Mean EDR	Aircraft Configuration
2	Wind Quality Indicator	Peak EDR	Aircraft Type
3	Wind Speed	Peak EDR Offset	Gross Weight
4	Wind Direction	Water Vapor	Wingspan
5	Air Temperature		
6	Airspeed		

	Flight Weather Message On-condition Broadcast	Temp, Wind & Turbulence Message On-condition Broadcast	Hazardous Weather Message On-condition Broadcast	
1	PIREP Time	PIREP Air Temperature	PIREP Icing	
2	Flight Visibility	PIREP Air Temperature Type	Airspeed Change	
3	Flight Weather 1	PIREP Wind Direction	Wind Shear Height	
4	Flight Weather 2	PIREP Wind Speed	Braking Action	
5	Flight Weather 3	Turbulence Duration	Runway Number	
6	Layer 'A' Height	Turbulence Intensity	Runway Position	
7	Layer 'A' Thickness	Turbulence Location	Layer 'C' Height	
8	Layer 'A' Height Type	Layer 'B' Height	Layer 'C' Thickness	
9	Layer 'A' Coverage	Layer 'B' Thickness	Layer 'C' Height Type	
10		Layer 'B' Height Type	Layer 'C' Coverage	
11		Layer 'B' Coverage	Flight Weather 1 Vicinity Direction	
12			Flight Weather 2 Vicinity Direction	
13			Turbulence Type	

Item	Element (Code)	Contents	ADS-B PIREP Message Source	
1	3-letter station identifier (XXX)	Nearest weather reporting location to the reported phenomenon	Assigned by ground-based data processing	
2	Report type (/UA UUA)	Routine or Urgent PIREP		
3	Location (/OV)	Lat/Long, or in relation to a VOR		
5	Altitude (/FL)	Essential for turbulence and icing reports	Determined on ground from Track, based on Time	
4	Time (/TM)	Coordinated Universal Time	Translated on ground from PIREP Time in Flight Weather Message	
6	Type Aircraft (/TP)	Essential for turbulence and icing report interpretation	Direct: Aircraft State Message Indirect: ICAO 24-Bit Address, Flight Plan, Aircraft Registration	
7	Sky cover (/SK)	Cloud height and coverage (sky clear, few, scattered, broken, or overcast)	Flight Weather Message	
8	Weather (/WX)	Flight visibility, precipitation, restrictions to visibility, etc.	Flight Weather Message	
9	Temperature (/TA)	Degrees Celsius	Temp, Wind & Turbulence Message	
10	Wind (/WV)	Direction in degrees magnetic north and speed in knots	Temp, Wind & Turbulence Message	
11	Turbulence (/TB)	Intensity, Duration, Location, Type	Temp, Wind & Turbulence Message	
12	Icing (/IC)	Type and Intensity	Hazardous Weather Message	
13	Remarks (/RM)	For reporting elements not included or to clarify previously reported items	Required Condition Remarks, Wind Shear, Braking Action, Mountain Wave Encounter, Volcanic Odor	

DO-260C (1090ES ADS-B MOPS) is open for Final Review and Comment until 07 May 2020, with publication approval expected in September 2020.

ADS-B WX DEVELOPMENT NEXT STEPS

- ADS-B V3 messages could be available from avionics beginning in 2022
 - Ground receipt and distribution planning for ADS-B Wx (AIREP & PIREP) information will require continued coordination with users to maximize benefits
- Integration into user systems needs to be planned and implemented
 - MOPS does not apply to ground-based systems
 - AIREP Message handling and data dissemination
 - PIREP Message handling and PIREP Encoding

Native Function (in the box)

 ADS-B V3 compliant avionics would implement ADS-B Wx functionality

Optional Feature (maybe in the box)

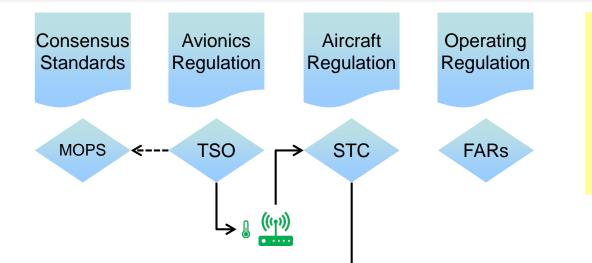
- ADS-B V3 compliant avionics may not implement ADS-B Wx functionality
 - ADS-B Wx Messages would only be implemented by manufacturers wishing to add ADS-B Wx feature

Reasons for Native Function

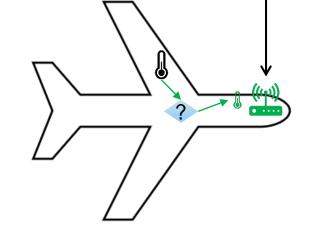
- Criticality of ABO to aviation forecasts and forecast model performance
- Improved routine weather surveillance
- Improved hazardous weather and wake turbulence prediction, detection, and avoidance
- Improved cruise and terminal operations

Reasons for Optional Feature

- Manufacturer costs to implement as native function
- Regulator processing of exceptions if manufacturers choose not to implement native function
- ADS-B V3 is not expected to be mandated for ADS-B Rule compliance (V2 required)


Feedback from 'mandate' to 'native' to 'optional' has been received

- 1. Should ADS-B Wx be specified as a native function or optional feature in the MOPS?
- 2. Should ADS-B Wx be specified as required for ADS-B V3 TSO compliance?
 - a. What installation guidance should be given to operators regarding connecting inputs that support ADS-B Wx?
- 3. Should ADS-B Wx be mandated for entry into ADS-B airspace?
 - a. For available information from installed systems, e.g. pressure, temperature, wind?
 - b. For all ADS-B Wx data, including those requiring equipage, e.g. EDR and Water Vapor?


Desired Standards & Regulation Outcome

FAA and EASA are tasked to recommend ADS-B Wx as a native function or optional feature in the MOPS during Final Review and Comment, which closes on 07 May 2020.

ADS-B Wx is specified as native in the MOPS and as required by TSO, with operators free to choose which ADS-B Wx inputs to connect.

ADS-B Wx is enabled on the basis of standards, avionics regulation, and the interests of operators.

- Continue ADS-B Wx development (AIREP and PIREP)
 - Support MOPS FRAC and perform comment resolution
- Plan and prepare to receive ADS-Wx Messages
- Continue coordination with:
 - Weather community (FAA, NWS, AWC, WMO, FPAW, others)
 - Other standards bodies and regulators (RTCA, EUROCAE, ICAO, Eurocontrol, FAA, SAE, others)
 - Manufacturers and Operators
- Harmonize UAT ADS-B with 1090ES ADS-B Standards

ADS-B Wx Coordination

ANSPs and Operators

- ANSP Regulators
 - FAA, EASA, NATS UK
- ANSP ATC
 - FAA ATO PMO Int'l Surveillance Lead
 - FAA ATO Top 5 Program
- ANSP Wx offices
 - FAA NextGen Weather Division
- ICAO Air Navigation Commission Panels
- Airlines, A4A, IATA
- Aopa, Nbaa
- Pilot unions (ALPA, APA)

Weather, Research, Safety, Others

- WMO
- National Wx offices
 - NOAA
 - Aviation Weather Center
- National research organizations
 - Aeronautical
 - Wx
 - Climate
- Aircraft and Avionics manufacturers
- NTSB
- Other affected standards committees

Stephen Darr, Dynamic Aerospace Inc RTCA/EUROCAE Combined Surveillance Committee, Weather Surveillance Subgroup Lead RTCA/EUROCAE SC-206/WG76 Subgroup 1 Co-Chair <u>sdarr@dynamicaerospace.com</u>

+1 (339) 364-0955

QUESTIONS

ADS-B Wx InDepth
BACKUP

Changes to ADS-B: V2 to V3

- What
 - Globally-harmonized, government/industry consensus standards for ADS-B V3
 - ADS-B V2 is current global standard
- Why
 - Remove unused V2 requirements and correct errors
 - Add requirements supporting additional ADS-B In (air-to-air) and ground-based applications
- How
 - Publish RTCA/EUROCAE MOPS and ICAO standards revisions
 - Invoke standards in regulations affecting aircraft and airspace
- Who
 - RTCA/EUROCAE committees and ICAO Air Navigation Commission Panels, Aviation Regulators
- Where
 - No mandate for V3: New ADS-B Out and ADS-B In avionics for forward fit, with retrofit at operators choice
 - Going forward, ADS-B Rule Airspace compliance using V2 or V3 avionics, at operators' option
- When
 - ADS-B V3 consensus standards to be published in 2020 (1090ES) and 2021 (UAT)
 - ADS-B V3 regulations to be published in 2021 (1090ES) and 2022 (UAT)
 - ADS-B V3 avionics could be available by 2022 (1090ES) and 2023 (UAT)

- Equipment Standards and Regulations
 - Specify message formats, broadcast intervals, and other requirements
- Operating Regulations
 - International ADS-B rules require broadcast of 1090 MHz Extended Squitters (1090ES)
 - US ADS-B Out Rule (mandate) specifies performance and airspaces for broadcast of messages
 - US has dual-link equipage option
 - 1090ES (required for Class A airspace operations); or,
 - Universal Access Transceivers (UAT) operating on 978 MHz

ADS-B WX AIREP PARAMETERS

• One of 32 values based on aircraft capability.

- Detection by Inflight Ice Detection System (FIDS), or
- Operating state of Ice Protection System (IPS)
- FIDS reports icing conditions being encountered by aircraft
 - IPS may be operated in conditions conducive to but absent of icing. Encoded values distinguish IPS from FIDS inputs.

Quality Indicator

- Based on Roll Angle and Ground Velocity Source (if available)
- Wind Speed and Wind Direction
 - Sourced from system approved to display wind data to flight crew or as input for flight management functions

- Static Air Temperature (preferred) <u>or</u> Total Air Temperature
- Sourced from system approved to display Air Temperature data to flight crew or as input for flight management functions

- True Airspeed (preferred) or Calibrated Airspeed
- Sourced from system approved to output Airspeed for display to flight crew or as input for flight management functions, e.g. TSO-C106 certified source

- Derived onboard using specialized algorithms
 - For ADS-Wx, must meet minimum requirements in DO-370 and DO-260C Appendix V
- Mean Eddy Dissipation Rate (EDR)
 - Rolling Last 1-minute average of EDR values
- Peak EDR and Offset
 - Peak represents maximum of EDR values in Last 1-minute
 - Offset identifies Peak as within one of eight 7.5-second windows in Last 1-minute

- Derived onboard, if equipped, by specialized, supplemental type certificated equipment
- Derivation recommendations included in DO-260C Appendix V

- Static or Dynamic depending on aircraft capability
- Static value
 - Configured during ADS-B system installation for:
 - Non-reportable slat-flap position, <u>and</u>
 - Fixed or non-reportable landing gear position
- Dynamic values
 - Slat/Flap extensions mapped into High/Medium/Low ranges by aircraft manufacturer
 - Sourced from systems approved to display slat/flap extension and landing gear positions to flight crew

• Static value

- Per ICAO Doc 8643, Aircraft Type Designators
- Configured during ADS-B system installation

- Static or Dynamic depending on aircraft capability and operator choice
- Static value
 - Configured during ADS-B system installation
 - Certificated Maximum Takeoff Weight (MTOW)

• Dynamic values

- Current Gross Weight based on computed preflight weight less actual consumption of inflight consumables
- Sourced from system approved to display current gross weight to flight crew or as input for flight management functions
- Reverts to MTOW if Current Gross Weight becomes unavailable

Static value

- Configured during ADS-B system installation
- Per manufacturer specifications for aircraft Make and Model, including approved modifications
- Encoded in discrete ranges that encompass entire physical width of aircraft

ADS-B PIREP PARAMETERS

Pilot Entry and Encoding

- Pilot enters time of weather encounter
- PIREP Time is encoded relative to current time
 - 5 bits (32 values) representing 0-31 minutes in 1 minute increments
 - Older observations not reportable via ADS-B PIREP submission

Decoding and Distribution

- Relative Time is applied from time of receipt to determine encoded PIREP Time, in UTC
 - Distributed in /TM field
- Location is determined from track position at encoded PIREP Time
 - Distributed in /OV field
- Altitude is determined from track altitude at encoded PIREP Time
 - Distributed in /FL field

Pilot Entry and Encoding

- Static value
 - Per ICAO Doc 8643, Aircraft Type Designators
- Not a Pilot input
 - Encoded in ADS-Wx AIREP Message, Subtype 0 (Aircraft State)
 - Configured during system installation
 - Correlated on ground from other ADS-B Message content
 - ICAO Address, Flight ID, Aircraft Registration

Decoding and Distribution

- Correlated to PIREP based on
 - "Aircraft Type" subfield in Aircraft State Message; or,
 - "ID Character" subfields in ADS-B Aircraft Identification and Category Message (database lookup); or,
 - Flight ID or Registration Number
 - "Address, Announced" subfield (part of every ADS-B message) via database lookup, if ICAO 24-bit address
- Distributed in /TP field

ADS-B PIREP: Layer A/B/C Height

Pilot Entry and Encoding

- Pilot provides known
 - Layer Base Height (MSL)
 - Layer Top Height (MSL)
- Encoding
 - Layer Height (MSL) [ft]
 - 0-18,000 in 500 [ft] increments
 - 18,000-44,000 in 1,000 [ft] increments

Decoding and Distribution

- Layer characteristics
 - Logical combinations of four subfields (Height, Thickness, Height Type, Coverage)
- Distributed in /SK, /RM fields depending on layer type
 - Encoded in hundreds of feet
 - Rules needed for encoding based on range-based reporting

- Pilot provides known
 - Layer Base Height (MSL)
 - Layer Top Height (MSL)
- Encoding
 - Layer Thickness = Layer Top Height less Layer Base Height
 - 0'-10,000' in 500 [ft] increments
 - 10,000'-19,000' in 1,000 [ft] incr.

- Layer characteristics
 - Top and/or Base determined from Layer Height, Layer Thickness, Layer Height Type
- Distributed in /SK, /RM fields depending on layer type
 - Encoded in hundreds of feet
 - Rules needed for encoding based on range-based reporting

- Pilot provides known
 - Layer Type
- Encoding
 - Icing Base or Icing Top
 - Turbulence Base or Turbulence Top
 - Fog Base or Fog Top
 - Cloud Base or Cloud Top
 - Haze Base or Haze Top
 - Smoke Base or Smoke Top
 - Dust Base or Dust Top
 - Wake or Mountain Wave Top

- Layer characteristics
 - Logical combinations of four subfields (Height, Thickness, Height Type, Coverage)
- Distributed in /SK, /RM fields depending on layer type

- Pilot Selects
 - None, None Below, None Above
 - FEW, FEW Below, FEW Above
 - SCT (Scattered), SCT Below, SCT Above
 - BKN (Broken), BKN Below, BKN Above
 - OVC (Overcast), OVC Below, OVC Above
- FEW, SCT, BKN, OVC apply to 'Cloud Base' or 'Cloud Top' Layer Height Types only

- Layer characteristics
 - Logical combinations of four subfields (Height, Thickness, Height Type, Coverage)
- Distributed in /SK, /RM fields depending on layer type

- Flight Visibility value entered is as permitted by implementer
- Encoding of Flight Visibility shall be limited to:
 - Less than 1 SM (LIFR)
 - 1 SM to 3 SM (IFR)
 - 3 SM to 5 SM (MVFR)
 - 5 SM to 10 SM (VFR)
 - 10-20 SM
 - 20-40 SM
 - 40+ SM

- Distributed in /WX field
 - PIREP coding rules needed for encoding range values reported

- Up to three of 116 prescribed conditions defined in
 - Fed Met Handbook 12 and 1
 - Base conditions modified by intensity and proximity modifiers
- Additions based on
 - AWC ADDS PIREP Webtool
 - Community Input
 - Dry Thunderstorms
 - Lightning
 - Volcanic Odor
 - Cloud Types

- Abbreviations translated from "Flight Weather 1/2/3" subfields
- 'Vicinity' direction added from "Flight Weather 1/2 Vicinity Direction" subfields
- Distributed in /WX /RM fields
 - Certain conditions require additional Remarks entry

- Static Air Temperature or Total Air Temperature and Type
 - Type identified in "PIREP Air Temperature Type" subfield
- Sourced from system approved to display Air Temperature to flight crew
- Range and resolution as per ADS-Wx AIREP Message, Subtype 1 (Weather State)

- Validated for reasonableness against forecast at Time and Location
- For Air Temperature Type = Static Air Temperature, transcribed from Temp, Wind & Turbulence Message subfields
- For Air Temperature Type = Total Air Temperature, possible ground-based estimate of Static Air Temperature based on Surveillance and PIREP data for encoded PIREP
- Distributed in /TA field

ADS-B PIREP: PIREP Wind

Pilot Entry and Encoding

- Wind Speed and Wind Direction
 - Pilot input; calculated or sourced from system approved to display wind data to flight crew
- PIREP Wind Speed encoded as per ADS-Wx AIREP Message, Subtype 1 (Weather State)
- PIREP Wind Direction encoded in ten-degree increments relative to magnetic North

- Directly transcribed from ADS-Wx PIREP Message subfields
- Validated for reasonableness against forecast at time and location
- Distributed in /WV field

ADS-B PIREP: Turbulence

Pilot Entry and Encoding

- Pilot entered per AIP definitions
- Encoded in four subfields
 - Duration (2 bits)
 - Occasional/ Intermittent/ Continuous
 - Intensity (3 bits)
 - None/ Light/ Moderate/ Severe/ Extreme
 - Location (2 bits)
 - In Clear/ In Cloud/ Near Cloud
 - Type (2 bits)
 - Atmospheric/ Mountain Wave/ Wake

- Logical combinations of four subfields (Duration, Intensity, Location, Type)
- Layer characteristics
 - Combination of two subfields (Layer Height, Layer Thickness) for Layer Height Type = Turbulence Base or Turbulence Top
- Distributed in /TB field
- Turbulence Intensity used to characterize Wake and/or Mountain Wave Encounter Turbulence Types
 - Layer Height used for encounter altitude
 - Layer Thickness represents altitude loss
- Distributed in /RM field
- Turbulence Type = 'Wake'
 - Not processed into encoded PIREP
 - Wake encounters tallied separately from PIREPs

ADS-B PIREP: PIREP Icing

Pilot Entry and Encoding

- Pilot guidance for Icing Report elements
 - Type and Intensity, Indicated Airspeed, Outside (Static) Air Temperature
- Pilot input selected from subset of FIDS-related values
 - None
 - Types- Unknown/ Rime/ Mixed/ Clear
 - Intensity- Unknown/ Trace/ Light/ Moderate/ Severe
 - Supercooled Large Droplet Icing
 - Mixed Phase/ Ice Crystal Icing

- Type and Intensity determined from "PIREP Icing" Hazardous Weather Message subfield
- Distributed in /IC field
 - Air Temperature from Temp, Wind & Turbulence Message distributed in /TA field
 - Airspeed not encoded, therefore not reported via ADS-B PIREP submissions (PIREP applications can still request airspeed to prompt pilot attention to it)

ADS-B PIREP: Airspeed Change

Pilot Entry and Encoding

- Entered for Wind Shear, Mountain Wave, and Wake encounters
- Airspeed Change (4 bits)
 - 10-40 knots in 5 knot increments for Gain or Loss
 - Greater than 40 knots encoded as 40+ knots
 - 0-10 knot change not reported with Gain/Loss modifier

- Correlated with other valid ADS-Wx PIREP Message subfields for applicability to encounter
 - Wind Shear Height for Wind Shear encounter
 - Turbulence Type for Wake or Mountain Wave encounters
- Distributed in /RM field
 - In conjunction with Wind Shear Height and Runway information for Wind Shear
 - In conjunction with layer characteristics for Mountain Wave encounters
- Turbulence Type = 'Wake'
 - Not processed into encoded PIREP
 - Wake encounters tallied separately from PIREPs

ADS-B PIREP: Wind Shear Height

Pilot Entry and Encoding

- Entry limited to range values
 - 0'-200' Height Above Threshold (HAT), Above Ground Level (AGL)
 - 300' increments from 200'-2000' HAT AGL
- Applicable only to Wind Shear
 - Not applicable to Wake Encounter reporting

- Wind Shear Encounter Correlated with Airspeed Change
- Distributed in /RM field
 - In conjunction with Airspeed Change and Runway information

- Entry guidance per SAFO 19001
- Braking Action (4 bits)
 - Dry Runway
 - Good
 - Good-Medium
 - Medium
 - Medium-Poor
 - Poor
 - Nil

- Directly transcribed from "Braking Action" subfield in Hazardous Weather Message
- Distributed in /RM field
 - In conjunction with Runway information

- Runway entry provides information for Wind Shear, Braking Action, Wake Encounter (operating to/from runway) reports
- Runway Number (6 bits)
 - 01-36 Runway Identifiers
- Runway Position (2 bits)
 - Single/L/C/R
 - Single is default

- Runway Position is valid only with valid Runway Number
- Distributed in /RM field
 - In conjunction with valid Wind Shear and/or Braking Action information
- Turbulence Type = 'Wake'
 - Not processed into encoded PIREP
 - Wake encounters tallied separately from PIREPs