### WTIC – Crowd Sourcing Projects



WTIC Program Manager: Gary Pokodner

10/17/2018

#### **Crowd Sourcing Visibility Information**

#### Goals

- Determine whether Crowd Sourcing weather information using cameras produces useful visibility information
- Prototype Crowd Source architecture for visibility information using Alaska Webcams
- Evaluate outputs of crowd sourcing for pilot utility
  - Investigate potential for use as model observation inputs
  - Compare utility of crowd source output to Webcam images





#### **Crowd Sourcing Visibility Information**

#### Human Intelligence Task - Example

#### **Instructions**

For the images below, use the clear air image as a reference and estimate the ground visibility (in Statute Miles) in the current image. If the image is entirely obscured, set a value of 0.0. If the visibility exceeds the scale, just set the maximum value of the scale.









#### **Crowd Sourcing Visibility Findings**

#### Summary of Findings

- 81.4% of the visibility results were within 20% of the ASOS visibility
- 16.5% were between 20% and 50%
- 2% were more than 50% from ASOS visibility
- ASOS results may not always provide maximum utility to pilots in "challenging" visibility conditions
  - Pilot assessments of visibility conditions varied greatly
- Some cameras are not good choices for crowd sourcing





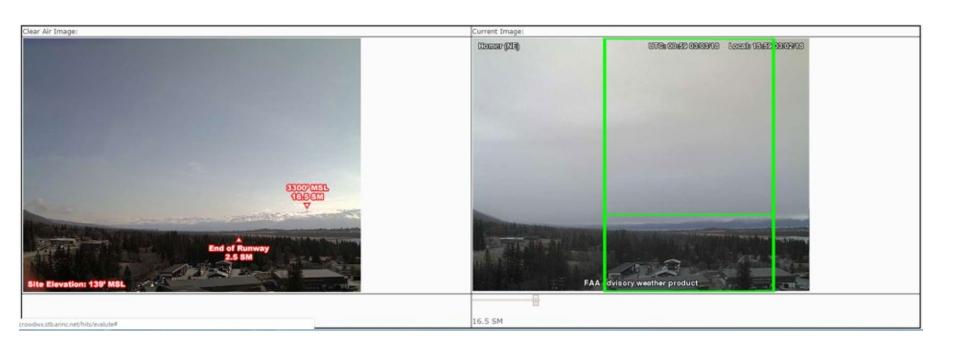
### **Crowd Sourcing Visibility Findings**

- Recently completed successful demonstration of hybrid solution using edge detection software and crowd sourcing
  - Edge detection used to measure visibility in certain conditions, monitors for changing conditions, and controls switch for sending images to the crowd to process when needed
  - Hybrid solution significantly reduced the amount of crowd sourcing needed
  - Looking at ways to get "volunteer" crowds to further lower costs
  - "Selective crowd" likely to result in faster convergence and high confidence
  - Adding additional logic to maximize quality and efficiency, and minimize costs





### **Crowd Sourcing - Ceiling**

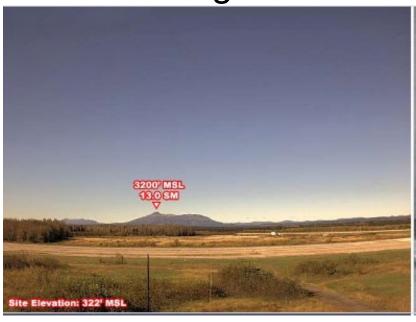

- Goal: Determine whether crowd-sourcing can be used to get useful ceiling information.
- A web-based interface was created for the selective crowd to provide ceiling assessments on Alaska Camera images.
- The strategy is to allow the crowd worker use the mouse to select the bottom of clouds relative to the marker location.





# **Crowd Sourcing - Ceiling**

Ceiling Assessment Interface








# **Crowd Sourcing - Ceiling**

Ceiling 3122 ft. MSL at Marker location





|         |                  |       | 2018-03-    | 2018-09-    | 2018-09-    |     |      |  |
|---------|------------------|-------|-------------|-------------|-------------|-----|------|--|
| walterc | 10191-1520439660 | 10191 | 07T16:21:00 | 14T20:20:00 | 14T20:20:00 | 2.5 | 3122 |  |





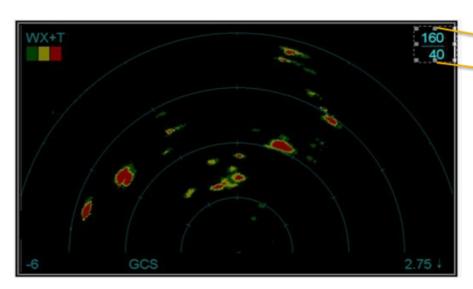
### **Crowd Sourcing Wind Information**

- Research employing convolutional neural network (CNN) machine learning techniques to determine answers to the questions:
  - What are the key challenges involved in automating the determination of surface wind speed and direction over runways at uncontrolled airports using a single web camera?
  - What are the requirements on the configuration/placement of the web camera in relation to the wind sock to obtain the highest quality information?
  - What is the expected reproducibility of the results?





### **Crowd Sourcing Wind Information**


- Successful feasibility study using Harris Helios product and analytics to calculate wind speed and direction via a camera pointed at a wind sock
- Study identified camera position and performance for optimum results
- Analytics also detected issues with windsocks
- Additional imagery and training of analytics would improve results
- Applications and additional research under review





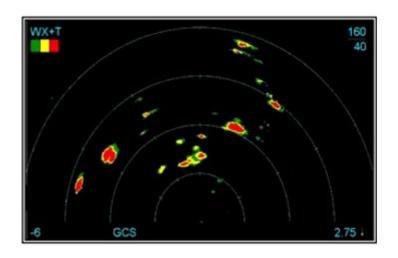
## Crowd Sourcing – "Photo PIREPs"

Forward Looking Radar – Optical Character Recognition

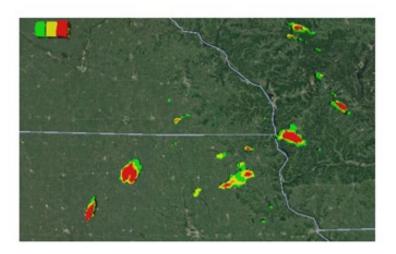


Source WxR Image Graphic

http://www.newocr.com/


FreeWare OCR software extracting Range and Range Ring Distance Information from Source Image






# Crowd Sourcing – "Photo PIREPs"

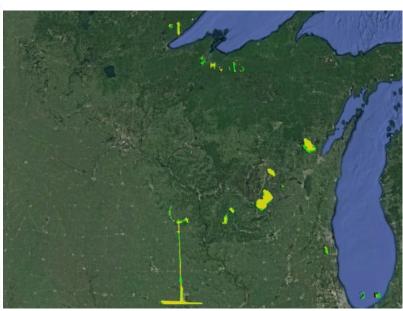
Forward Looking Radar – Object Classification



Source WxR Image Graphic



Weather Cells Segmented and Georeferenced (Displayed in Google Earth)






# **Crowd Sourcing – "Photo PIREPs"**



Pilot photo on Airbus A320 (High glare)



Weather Extraction Results (Missing weather due to glare)





## **Crowd Source - Challenges**

- System for storage and dissemination
  - Cloud, CSS Wx, NWS, third parties, airlines???
- What should be used as "truth" or "goodness rating" for crowd sourcing outputs
- How much airborne Wx radar coverage provides benefit in Alaska or other remote areas
- Availability of free crowd labor
- Should crowd sourcing trying to emulate ASOS or enhance utility of information for pilots









ASOS = 4 mi

CrS = 3.8 mi









ASOS = 9 mi

CrS = 2.0 mi

NOTE: MAX ASOS visibility is 10 miles









ASOS = 1 mi

CrS = 1.0 mi









ASOS = 8 mi

CrS = 2.0 mi





Can crowd sourcing provide more utility than "MET Visibility?"





ASOS = 8 miCrS = 2.0 mi

Mtn obs at 6 Mi, 15 mi



