Weather Technology in the Cockpit (WTIC) Planning and Status Update

NextGEN

Eldridge Frazier

July 22, 2014

Weather Technology in the Cockpit (WTIC)

Program Description

- Research projects to develop, verify, and validate requirements for incorporation into Minimum Weather Service (MinWxSvc) standards
 - FAR Part 121, <u>OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL</u> <u>OPERATIONS (i.e. commercial operations)</u>
 - FAR Part 135, <u>OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS</u> <u>AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT (i.e. commuter, on demand, and air taxi operations)</u>
 - FAR Part 91, <u>GENERAL OPERATING AND FLIGHT RULES</u> (includes General Aviation operations)
- The MinWxSvc is defined as:
 - Minimum cockpit meteorological (MET) information
 - Minimum performance standards (e.g. accuracy) of the MET information
 - Minimum information rendering standards

FY13 Enacted	FY14 Enacted	FY15 President's Budget Submission	
\$4.8M	\$4.0M	\$4.04M	

WTIC – Eddy Dissipation Rate (EDR) Update

- Completing operational demonstration on cockpit display of turbulence information
- Benefits assessment post demo Benefits to aircraft and NAS to be assessed
- Developing technical transfer package

Adverse Weather Alerting

- Researching potential benefits of providing adverse weather alerting in GA and Part 121
 - Turbulence alerting using NTDA separate alerting project
 - Candidates: microbursts, hail, icing, non-convective turbulence, low IFR, high crosswinds, etc

4

WTIC – Standards Development

- WTIC research and deliverables to support standards, guidance, and training material development
- GA training modules planned to be posted on FAA training site
- RTCA standards alignment among contributing special committees (SC-186, SC-206, SC-214, SC-227)

RTCA Special Committee 206

- Established Feb. 11, 2005 at the request of the FAA to address the future ATM concept of:
 - Establishing the aircraft as a primary participant in collaborative decision making (CDM).
 - Transitioning to a global Aeronautical Information Management (AIM) environment.
 - Using Broadcast, Demand, and Contract data link modes for accessing AIS/MET information.
 - Establishing the data link services as the normal (or primary) means for cockpit receipt & decisions using time-critical information
 - For the first two deliverables listed below, this SC worked in conjunction with EUROCAE WG-76
- Leadership
 - Co-Chairs: Rocky Stone, United Airlines and Allan Hart, Honeywell +
 - Designated Federal Official: Eldridge Frazier, FAA Weather Research Branch
 - Secretary: Tom Evans, NASA
 - **RTCA Program Directors: Sophie Bousquet** +
- Sub-groups
 - #4 (DO-252) Tim Rahmes, Boeing & Tammy Farrar, FAA +
 - #5 (MOPS) Stephanie Smith, Garmin & Paul Freeman, ITT Exelis
 - #6 (MASPS) Matt de Ris, Panasonic Avionics Corporation & Allan Hart, Honeywell +

Deliverable	Date Completed	Status	Document #
Operational Service and Environment Description (OSED) for Aeronautical Information Services (AIS) and Meteorological (MET) Data Link Services	Dec 2007	Released	DO-308
Safety and Performance Requirements (SPR) for AIS and MET Data Link Services	Oct 2010	Released	DO-324
Wake Vortex, Air Traffic Management, and Weather Applications OSED	June 2012	Released	DO-339
Concept of Use of AIS and MET Data Link Services (supports MASPS)	June 2012	Released	DO-340
AIS and MET Services Delivery Architecture Recommendations	December 2013	Released	DO-349
Revise DO-252 to include performance standards for determining EDR and meteorological sensor reports and status	June 2014	Approved	
Minimum Operational Performance Standards (MOPS) for Flight Information Services – Broadcast (FIS-B) with Universal Access Transceiver (UAT)	December 2014	In works	
Minimum Aviation System Performance Standards (MASPS) for AIS and MET Services	December 2015	In works	
			XIGEN

WTIC General Aviation Gap Analyses

- Multiple projects performing research to identify safety hazards at least in part attributable to a gap of MET information the cockpit
- Sample gaps and shortfalls
 - Inconsistent recognition of changing weather states between commercial presentation
 - As low as 26% recognition of METAR changing from MFR to IMC
 - Weather related incidents/accidents decision based versus skill based
 - Interim research indicating as much as 70% GA aircraft penetrating convective weather had NEXRAD on board
 - GA MET equipment marketing is primarily feature based versus use and application based

WTIC - Future

- Displays Integrating information on the flight deck
 - Weather integrated with other information
 - Human factors for hazard alerting
 - Integration of airborne sensor data into 4-D weather
- Sensing and information processing
 - Research on new and enhanced external sensors
 - Automated weather hazard monitoring
- Net-centric information sharing

