

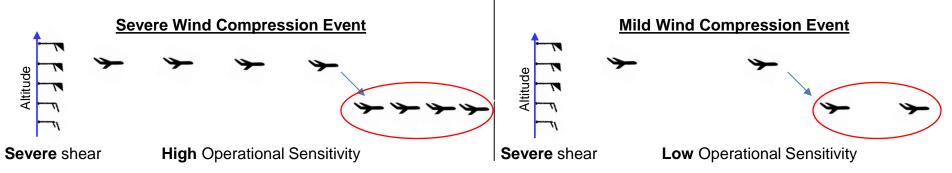
Initial Assessment of Forecast Performance in Predicting Wind Shear Conditions Conducive to Wind Compression

22 July 2014

Colleen Reiche

Work Sponsored by FAA ANG-C6

engineering consulting


integration

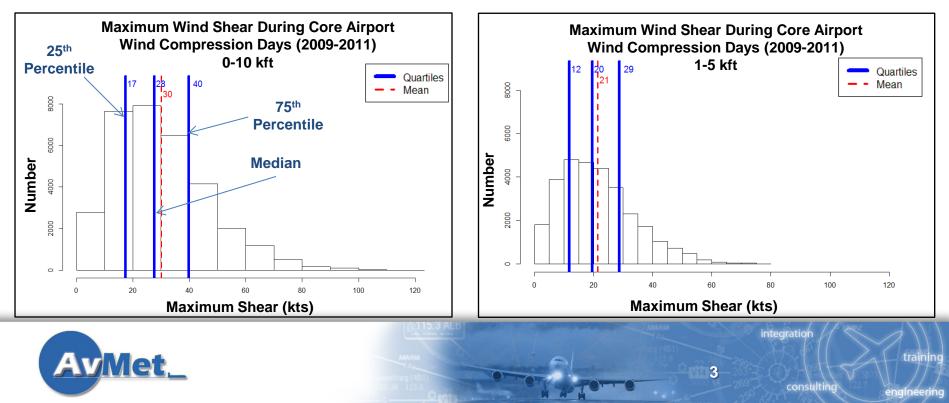
AvMet Applications, Inc. 1800 Alexander Bell Dr., Ste. 130 Reston, VA 20191

training

Two Components of Wind Compression Events

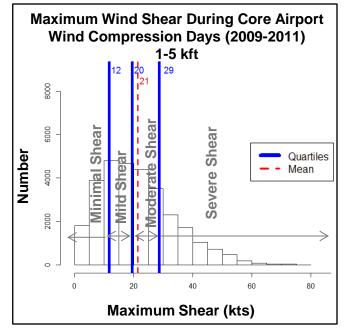
- Specific meteorological wind shear conditions may manifest as wind compression events of differing severity depending on air traffic volume and active airspace configuration (i.e., operational sensitivity)
 - Wind shear environment "sets the stage" for potential wind compression events
 - Not translated into a wind compression event unless it disrupts air traffic flow
 - Shear can have varying "magnitudes" depending on differences in wind vectors with altitude
 - Sufficient traffic demand, relative to operational capacity, necessary to create wind compression event
 - Per airport dependency (route congestion, arrival capacity, etc.)
 - Combination of wind shear environment and air traffic volume "magnitudes" dictates severity of wind compression event

Shear Vector	Wind Comp	Wind Compression		Operational Sensitivity		
Viting Lector of at wind withde b	Wind Compression		Low	Moderate	High	
	Wind Shear	Mild				
		Moderate				
		Severe				
1. P.		DOM: STATE			Tanana San Ma	



training

integration

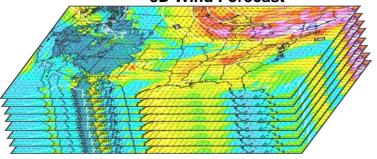

Identification of Critical Wind Shear Values

- Isolate key wind conditions conducive to wind compression events prior to consideration of operational dependencies
- Generated distribution of maximum wind shear values at Core airports during historical wind compression days (2009-2011) at both target altitude layers (0-10 kft, 1-5 kft)
 - Distributions are representative of wind shear conditions during wind compression at all airports
- Three critical statistically significant wind shear values identified from representative maximum wind shear distributions
 - Identified independently in both target altitude ranges (0-10 kft and 1-5 kft)
 - Can be used to define four categories of wind shear magnitude

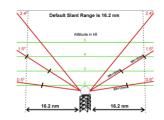
Preliminary Wind Shear Magnitude Categories

- Four wind shear categories determined from critical values in representative maximum wind shear distributions
 - Identified independently for both altitude layers
 - Wind speeds greater at high altitudes, which can produce greater quartile shear values for 0-10 kft layer
 - Using same categories for both could cause mis-categorization of shear conditions
 - Round quartile values to nearest 10 kts
 - Categories defined by maximum wind shear ranges between critical thresholds
- These categories used to assess the skill of both forecast products (HRRR, SREF) at predicting wind shear conditions during historical wind compression events (Dec 2013 – Jan 2014)

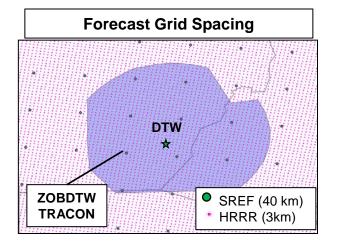
	Minimal Wind Shear (kts)	Mild Wind Shear (kts)	Moderate Wind Shear (kts)	Severe Wind Shear (kts)
0-10 kft	< 20	20-30	30-40	> 40
1-5 kft	< 10	10-20	20-30	> 30


integration

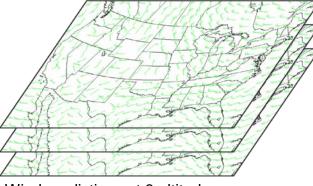
training


Target Wind Shear Products

High Resolution Rapid Refresh (HRRR) 3D Wind Forecast


- Wind predictions at 49 altitudes
- Operational in 2014 and currently used
- by ATM decision makers for situational awareness
- 3 km horizontal spatial resolution
- Issued hourly with 1 hour forecast increments out to 15 hours lead time

NEXRAD Vertical Wind Profile (VWP) Observations



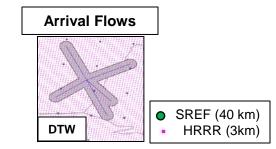
From Chrisman and Smith (2009)

- Radar locations within miles of the Core airports
- Observations taken every 10 minutes
- Vertical wind profile constructed from observations at various elevation angles

Short Range Ensemble Forecast (SREF) 3D Wind Forecast

- Wind predictions at 8 altitudes
- Operational use for situational awareness
- 40 km horizontal spatial resolution
- Hourly forecasts issued four times a day (3Z, 9Z, 15Z, 21Z) out to 87 hours lead time

integration

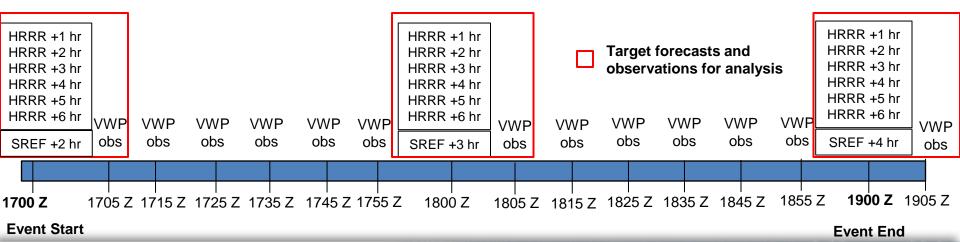

5

training

Forecast Analysis - Experiment Design

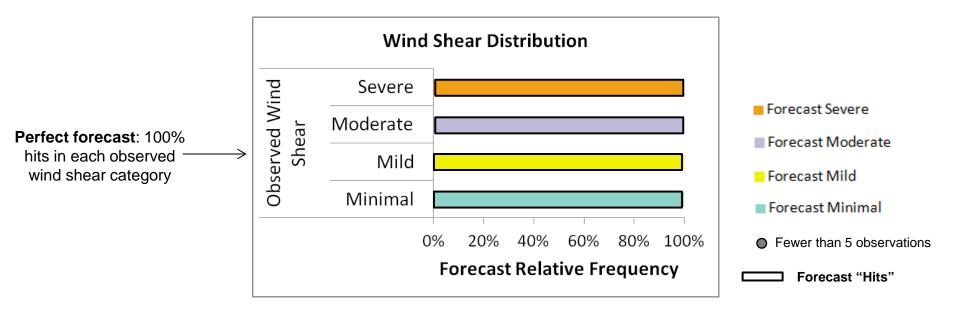
- Validate 1-6 hour forecasts of wind shear conditions at low altitudes at each hour during 69 NTML defined wind compression events from Dec 2013 – Jan 2014 at 8 target airports
 - Focus on airports with greatest frequency of events (ATL, DTW, EWR, JFK, LGA, LAX, PHL, DCA)
 - Validate forecasts for key arrival altitude layers (0-10 kft, 1-5 kft) on appropriate spatial scales

integration


consultin

6

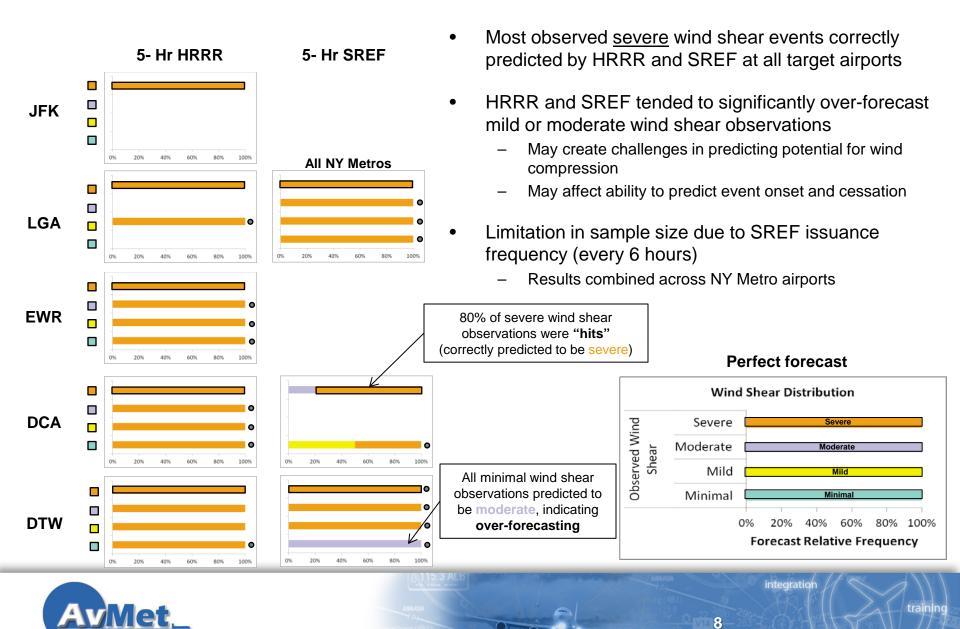
training


enginéering

- Compare each hourly lead time forecast to observations during target events
 - Only one lead time SREF forecast available at every hour during each event (03Z, 09Z, 15Z, 21Z only)
- Enables evaluation of temporal performance needs for wind shear prediction

Assessing Forecast Performance

- Evaluate relative forecast frequency for observations in each wind shear category for each combination of lead time, airport, and altitude layer
 - Generated distribution of forecasted wind shear categories for those observations
 - No frequencies shown if there were no observations in a given wind shear category
 - Forecast accuracy expressed by percentage of observations correctly predicted ("hits")
 - Large portion of correctly predicted observations (wider black box) indicates good forecast skill of that category
 - Small number of observations in a given wind shear category can produce misleading frequencies
 - Highlight scenarios with fewer than 5 observations in that wind shear category



training

integration

Sample of Forecast Performance Results: 0-10 kft

consulting

enginéering

Ongoing Efforts

- Generate refined airport-specific wind shear category definitions
 - More appropriate consideration of regional wind climatology
 - Will enable meteorological identification of significant wind shear events independent of operational impacts (NTML logs)
- Evaluate forecast performance at predicting operationally critical onset of significant wind shear conditions
 - Identify historical wind shear events using refined shear categories
 - Assess forecast performance at predicting timing and severity of wind shear conditions at their onset
- Assess utility and skill of wind shear forecasts relative to operational sensitivity
 - Incorporate considerations of traffic volume and active airspace configuration to more completely characterize wind compression and assess overall event prediction capability
 - Evaluate wind shear forecast performance relative to individual arrival flows
 - Explicitly consider direction of shear vector relative to traffic flow direction at each airport (headwind/tailwind)
 - Evaluate forecast accuracy along each arrival flow path independently

Wind Compression		Operational Sensitivity			
		Low	Moderate	High	
Wind Shear	Mild				
	Moderate				
	Severe				

training

integration

9