

Using Simulation in NextGen Benefits Quantification

Alexander Klein July 22, 2014

AvMet Applications, Inc. 1800 Alexander Bell Dr., Ste. 130 Reston, VA 20191

Simulation Model Spectrum

Analytical models (e.g. Excel based)

Queuing/network mode	els
----------------------	-----

Superfast-time simulation models Medium-to-high detail Entire NAS

DART

"Weather-aware" "NextGen-aware" Highly detailed Day-in-the NAS in 2 min

integratio

High-fidelity fast-time simulation models

Airport surface / TRACON Group of sectors to Center

Real-time Human-in-the Loop simulators

Examples of DART Supported NextGen Benefit Analysis Studies

- NextGen technology elements
 - DataComm, ELVO, NVS, RNP-E
 - Technology Portfolios
 - Equipage and traffic growth scenarios, e.g. through 2030
- NextGen weather products and tools
 - CSS-WX, NWP
- New procedures (Wx related), technology driven benefits

integration

- CATMT, EDR
- New procedures, safety concerns dis-benefits
 - CRO, Winter weather

DART Next-Generation ATM Study Example

A sample DART NextGen portfolio-of-technologies study output (including DataComm). This batch required 16,000 simulations, each representing a full day in the US NAS with 40-60,000 flights, weather, forecasts, and NextGen technology effects simulation, and took 5 days to complete.

traininc

integration

Improved Convective Forecast Accuracy – Benefit Analysis Using DART

- A range of forecast product features evaluated in DART using an entire convective season (instead of a handful of weather situations)
- Simulated operational benefits (reduced excess operating costs) of:
 - Improved forecast accuracy (from 'current' to 'more accurate' to 'perfect')
 - Use of convective echo tops forecast information
 - Operational impact of using finer weather grid resolution
 - More effective use of TMIs, more streamlined reroutes

training

integration

CoSPA with Echo Tops, 3D View

integration

consulting

training

enginéering

Back-up Slides

integration

consulting

8

training

enginéering

DART for Assessing "Value" of Alternative ATM Strategies/Decisions (Realized or Needed)

An Example

<u>Optimized solution:</u> Airway J29 open to relieve traffic on VUZ playbook reroute; reduced MIT, less delay

Only the traffic using select NAS Playbook reroutes is shown; Color-coding by delay: 0-15, 15-20, 30-60, 60-120, >120 min arrival delay <u>Non-optimal solution</u>: VUZ playbook reroute traffic uses standard route; J29 closed; heavier MIT, longer delays

TOTAL On-the-ground (at gate) Delay Savings (hr)	Airborne Holding Delay Savings (hr)	Airborne Reroute Delay Savings (hr)	TOTAL Airborne Delay Savings (hr)	TOTAL Delay Savings (hr)	# Reduced Cancellations	# Reduced Diversions	Reduced #Flights Delayed > 2 hours
153.9	-2.2	3.4	1.2	155.0	31	1	54

integration

training

Validation Using a **Multi-Day Period**

320000

280000

240000

200000

80000

40000

- daily

NAS metrics obtained from DART over a multi-day period (e.g. an entire convective season) are compared with historical data from **FAA** statistics

Validation Using a Multi-Day Period

Normalized RMSE is a measure of DART-vs-ASQP variance error over the entire convective season

Normalized RMSE					
Arr Delay	Cnx	Diversions			
13%	16%	15%			

NAS cancellations - daily

Cancellations - DART Simulation (Actual Traffic Demand) w. LAMP En-route Rechecks vs. ASQP - ASPM77 Airports - Summer 2011

Selected DART Output Metrics

- Delays/Cancellations/Diversions/Reroutes Statistics
 - Delays by type (ground, airborne, holding), cause (e.g. airport capacity, runway, en-route weather, GDPs, AFPs, etc.), and stage (departure, en-route, approach)
 - Scope: by individual air carrier, by airport, and the NAS summary for the day
 - Excess operating costs can be computed from these outputs
- Hourly movements and delays for major airports
- Traffic demand, directional capacity and occupancy for all Sectors/Centers
 - Original demand, demand adjusted by DART, capacity degradation due to diagnostic and forecast weather, maximum and average occupancy every 15 min
- "Denied sector entry requests" as a measure of airspace availability
- Sector events
 - Entry/exit, altitude changes, vectoring, airway transitions, potential conflicts, etc.

integration

- Airway weather impact statistics
- Individual flight statistics (Dep/Arr times, route length, delays, Wx impact)
- Flight plans and 1-min trajectories exported in flat-file TFMS/ASDI format
- WITI metrics (en-route, TRACON, terminal, Centers, Flows)

