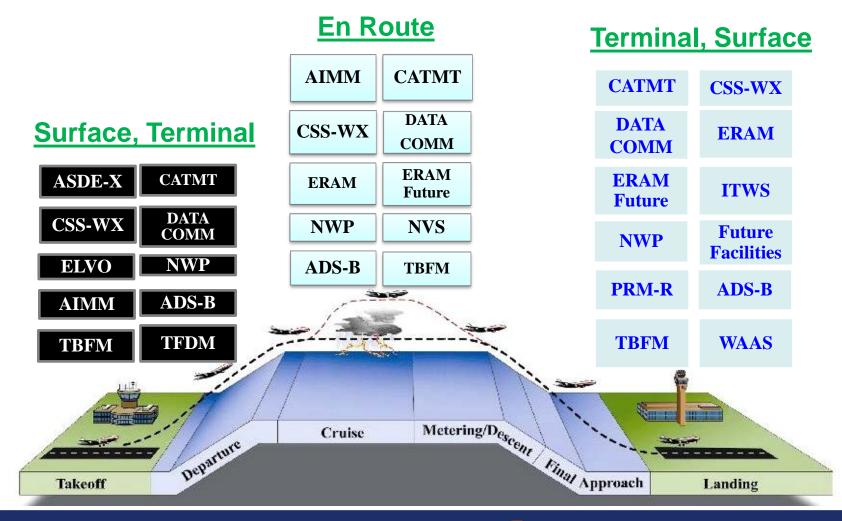
Quantifying Aviation Weather Forecast Benefits – an FAA Investment Analysis Perspective

Presented to: Friends/Partners in Aviation Weather Forum

By: Dan Citrenbaum, FAA, Investment Planning and Analysis, Operations Research Group


Date: July 24, 2013

Federal Aviation Administration

NAS Acquisition Programs

Flight Efficiency/Delay Savings Claims during Adverse Weather

FAA's Acquisition Management Process

The FAA's Investment Planning and Analysis Office works closely with the program offices to ensure a defensible business case moves forward

INVESTMENT ANALYSIS Concept & Requirements Final Investment Initial Investment MSSION ANALYSIS Analysis Analysis **METRICS** are OLUTION IMPLEMENT identified, Service Cap developed, and FAA transformed into benefits. All LIFECYCLE **Facilities and** MANAGEMENT PROCESS New Equipment (F&E) Service Needs acquisition programs go Corporate Planning IN-SERVICE MANAGEMENT Research for Service Analysis DISPOSAL through the Service-Level Analysis investment analysis Post Legend Implementation process. Concept & Requirements Definition Readiness Decision **Reviews** (PIRs) 2. Investment Analysis Readiness Decision 3. Initial Investment Decision are done shortly 4. Final Investment Decision after deployment --In-Service Decision includes benefits measurements

FAA Weather Programs

Forecast Related

Program	Forecast Mechanism	Key Benefit Categories	Primary Metrics
Weather Radar Processor (WARP)	Updated mosaics from NEXRADS	1) Navigating through holes, 2) deviating further upstream, 3) avoiding storm cells behind a front in en-route airspace	Delay savings en-route
Integrated Terminal Weather System (ITWS)	0-1 hour forecast for terminal areas	1) Arrival transition areas, 2) departure transition areas and 3) runways (better capacity utilization)	Delay savings airborne and ground
NextGEN Weather Processor (NWP) Replaces CIWS prototype	ARTCC based tool 0-2 hour forecast, echo tops, includes winter weather products	1) Keeping routes open, 2) pro-active rerouting	Delay savings airborne and ground
NextGEN Weather Processor (NWP) <i>Replaces CoSPA</i> <i>prototype</i>	Longer term forecast – 2 to 8 hours	1) AFP execution management, 2) enhanced playbook reroute planning and execution and 3) enhanced reroute planning	Safety Cost Avoidance
Terminal Doppler Weather Radar (TDWR)	Aviation weather products: precipitation, microburst, gust fronts, and related hazardous wind shear thru better detection	Increased safety in the terminal area	Safety

FAA Program – CATMT-WP2

Capabilities that use Forecast Weather to make Air Traffic Decisions

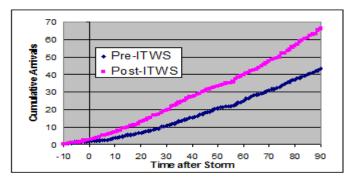
Program	Forecast Mechanism	Key Benefit Categories	Primary Metrics
CATMT- WP2 Route Availability Planning Tool (RAPT)	Integration of CIWS echo top and precipitation forecasts into display	Better departure route management, Improved route impact planning	Delay savings (ground)
CATMT-WP2 Traffic Flow Management System (TFMS)	Integration of CIWS products on Traffic Situational Displays (TSDs)	Keeping routes open longer, pro- active rerouting	Delay savings (airborne and ground)
CATMT- WP2 Collaborative Airspace Constraint Resolution (CACR)	Proposes effective, efficient, and integrated resolutions to airspace congestion problems. Actions are based on 0- 2 hour forecast weather	More efficient routes through better utilization of reduced airspace capacity	Delay savings (airborne and ground)

Illustration of Assessing Operational Performance - ITWS

Input

Purpose was to justify ITWS at 12 additional sites through data-driven analysis

Used CLT as existing site to establish the basis for capturing the benefits of ITWS


Meteorology assessment of 1-minute movies of weather and traffic into CLT

GOAL was to determine times when weather "should have" impacted runways and Arrival Transition Areas (ATAs) and Departure Transition Areas (DTAs) in TRACON Identified a sufficient sample of candidate pre/post day events at CLT since ITWS was operational at time of analysis.

Meteorologists captured start/stop times and storm impact for each day

Time Period	Time during	Overall Mean Flight Time Good Weather Days(100-40nmi)	Arrival Savings
Pre-ITWS	18.19	12.79	
Post- ITWS	15.73	12.02	
Difference	2.47 min	.77 min	1.7 min

Output

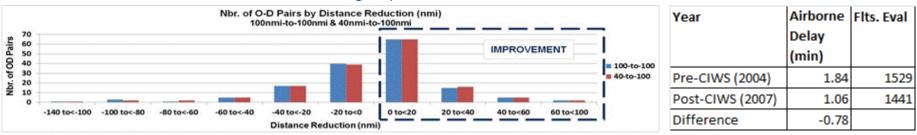


Illustration of Assessing Operational Performance - CIWS

Meteorology assessment of NCWD data to capture sufficient set of sample days with convective weather

Pre- Period				Post- Period							
				Intensity	Echo Top					Intensity	Echo Top
Date	Time (Z)	ZKC	ZMP	1-4	Opp.	Date	Time (Z)	ZKC	ZMP	1-4	Opp.
											Yes
7/8/2004	1100-1400		Х	2	YES	6/21/2007	1800-2300		X	2 to 3	(early)
7/8/2004	1400-1800	х		2 to 3	Yes	6/28/2007	1000-1600	X		2	Yes
7/11/2004	0200-0400		х	3	Maybe	6/29/2007	1000-1600	х		2	Yes
					Maybe						
7/11/2004	1000-1700		х	3 to 4	(late)	6/30/2007	1300-1700	х		2 to 3	Yes
					Maybe						
7/14/2004	1000-1300		х	2 to 3	(late)	7/3/2007	1100-1600		х	2 to 3	Yes
7/16/2004	1000-1500	Х		3	Maybe	7/8/2007	1100-1400		Х	3 to 4	Maybe
7/21/2004	1000-1300		Х	3	Yes	7/18/2007	1800-2300		Х	2 to 3	Yes
7/23/2004	1000-1800	Х		2	Yes	7/22/2007	1100-2100		Х	2 to 3	Maybe

OBJECTIVES – 1) to capture *data driven change* in airborne metric from pre-implementation to postimplementation for identifying change in airborne performance at ZMP and ZKC with CIWS, 2) compare with discrete-event simulation modeling outputs

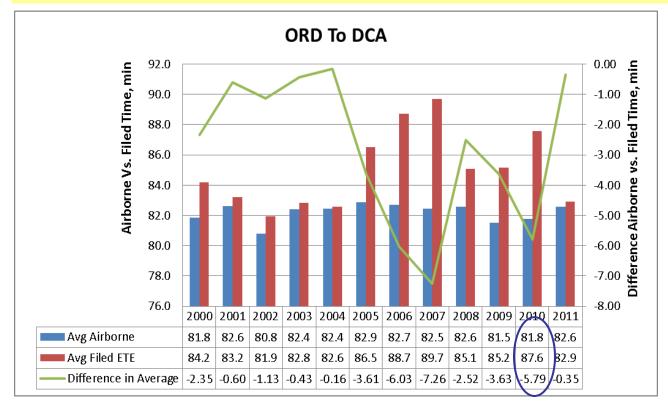


Illustration of Our Challenge

Airborne Time From ORD to DCA

This 500+ nmi flight, which flies through an average of 7 en route sectors, has averaged between 81.5 to 82.9 minutes of airborne time over a 12-year period. In 2010 there was a very wide range between the actual airborne time and the of Filed ETE. Can better usage of the forecast close the gap and improve the predictability of the flight ??

2010 ORD to DCA						
Month	Airborne	FP ETE	FP ETE- Airborne			
Jan	81.5	85.9	4.4			
Feb	81.8	85.3	3.5			
Mar	84.8	88.8	4			
Apr	80.6	85.6	5			
May	82.4	87.1	4.7			
Jun	80.7	86.6	5.9			
Jul	82	87.6	5.6			
Aug	81.7	88	6.3			
Sep	81.1	92.8	11.7			
Oct	81.2	92.6	11.4			
Nov	82	85	3			
Dec	81.5	84.2	2.7			

Source: ASPM

Methodology 1 ITWS BENEFITS Short-term forecast

Methodology 2 WARP BENEFITS NEXRAD mosaics

Legacy Weather Programs

<u>Candidate DSTs</u> Expected to Integrate <u>Weather Forecasts</u>

Methodology 3

CATMT WP2 BENEFITS

CIWS Integration on TSDs

Methodology 4 TBFM BENEFITS Metering during convective weather CONSISTENT METRICS that Measure Incremental Change from Today's State are

User Benefit Perspective

What is Needed to Ensure Defendable Measure of Success?

CRITICAL!!

En route distance savings

More efficient capacity utilization

Increased throughput (surface and airborne)

Reduced variance in flow separations

Fewer missed departure slots

NextGen Programs

Methodology 5

NWP BENEFITS

Improved short-term and long-term forecasts

Methodology 6

CSS-WX Benefits

Dissemination of Forecasts

Methodology 7

CATMT WP4 Benefits Improved Weather Forecast translation impacts Airport Acceptance Rates (AARs)

What Should the FAA be Doing?

- Develop a historical multi-year baseline that captures key measures to track the operational performance in various weather conditions
 - Winter precipitation, IMC, convective weather (terminal, TRACON, en-route), terminal winds, etc.
- Integrate various databases and data sets into a relational database/warehouse that can quickly address the "contribution of the forecast" questions
 - Utilize the National Traffic Management Log (NTML) and sector activity and arrival fix/ departure fix measures better
 - Take advantage of current Weather Impact Traffic Index (WITI) and WITI-Forecast Accuracy (WITI-FA) Toolset and flight data sets, e.g., ASPM, ASQP, OPSNET, PDARS
- Use post-analysis modeling tools to identify opportunities to measure events
- Quantify the impact of enhanced weather capabilities through a *portfolio based Operational Assessment*
 - Provide portfolio views that capture contributions of multiple programs contributing to the success of the flight as well as the individual program view
 - Helps assess the results of NextGen Operational Improvements

Questions?

