Improving Precipitation Measurement in ASOS in Support of Aircraft Ground Deicing

Presented to: FPAW By: Mark Gunzelman, AvMet Applications Date: August 8, 2012

Federal Aviation Administration

Purpose

 Provide an effective airport weather observation system to support ground anti/de-icing decision making.

Improving Precipitation Measurement in ASOS

Problem Statement

Ground anti/de-icing decision support requires <u>Frequently</u> reported <u>Liquid Water Equivalent</u> (LWE) rate to determine accurate and timely hold-over times

Improving Precipitation Measurement in ASOS

Current ASOS Shortfalls Applicable to Snow for Ground De-Icing Operations

- Special reports (SPECI) are not issued for onset, end, or change in intensity of snow events
- Current visibility-based method for snow intensity is not reliable
 - Must be replaced with LWE for long-term solution
 - Can be improved for an interim solution

Snow SPECI & FAA Snow Intensity Table

- Implement, in ASOS:
 - SPECI for snow beginning, ending, and changing intensity
 - FAA Snow Intensity Table (FSIT) Algorithm
 - Address possible effects of Obstructions-To-Visibility (OTV) on Snow Intensity determination.
 - Assess magnitude of problem
 - If warranted, develop and deploy screening algorithm

FMH-1 Table vs FAA Snow Intensity Table

FMH-1 Table						
Visibility (Statute Miles)						
> 0.50	> 0.25 - <= 0.50	<= 0.25				
Light	Moderate	Heavy				

	Temp.		Visibility in Statute Miles (Meters)									
Time of Day	Degrees Celsius	Degrees Fahrenheit	≥ 2 1/2 (≥ 4000)	2 (3200)	1 3/4 (2800)	1 1/2 (2400)	1 1/4 (2000)	1 (1600)	3/4 (1200)	1/2 (800)	<u><</u> 1/4 (<u><</u> 400)	
Day	colder/equal -1	colder/equal 30	Very Light	Very Light	Very Light	Light	Light	Light	Moderate	Moderate	Heavy	Snowfi
	warmer than -1	warmer than 30	Very Light	Light	Light	Light	Light	Moderate	Moderate	Heavy	Heavy	all Intens
Night	colder/equal -1	colder/equal 30	Very Light	Light	Light	Moderate	Moderate	Moderate	Moderate	Heavy	Heavy	sity
	warmer than -1	warmer than 30	Very Light	Light	Moderate	Moderate	Moderate	Moderate	Heavy	Heavy	Heavy	

Improving Precipitation Measurement in ASOS

Implement LWE Rate for Snow in ASOS

- Upgrade All Weather Precipitation Accumulation Gauge (AWPAG) software to determine LWE rate for snow.
- Continue use of current ASOS Precipitation Identifier (LEDWI) to detect and report snow
- Note: LEDWI does not reliably detect Snow Pellets, Freezing Drizzle, and Ice Pellets.

AWPAG Sensor

- Implement AWPAG software to determine LWE rate for snow.
- Improve AWPAG wind shielding (NWS currently installing Double Alter Snow Shield).
- Eliminate sudden snow dumps into gauge.

Current LEDWI Sensor

Improving Precipitation Measurement in ASOS Aug. 8, 2012

LWE Rate Benefits

- Reduce over-estimation of snow intensity rates by pilots resulting in unnecessary delays waiting for weather to improve.
- Reduce under-estimation of snow intensity rates by pilot resulting in unnecessary delays incurred by a return to the deicing pad.
- Reduces potential precipitation contamination on control surfaces on take-off.

Implementation

- First FAA/NWS will need to update ASOS Operating System software. Planned for FY16-17.
- If funding becomes available:
 - Snow SPECI, FAA Snow Intensity Table, and LWE rate capability for Snow will tentatively be implemented in ASOS beginning in FY17 (after ASOS Operating System is upgraded)

Backup Slides

Improving Precipitation Measurement in ASOS

FMH-1 Table vs FAA Snow Intensity Table

FMH-1 Table					
Visibility (Statute Miles)					
> 0.50	> 0.25 - <= 0.50	<= 0.25			
Light	Moderate	Heavy			

FAA Snow Intensity Table									
Time of Day	Тетр		Visibility (Statute Miles)						
	Degrees Celsius	Degrees Fahrenheit	>1.5	>1.0 - <= 1.5	> 0.75 - <= 1.0	> 0.50 - <= 0.75	> 0.25 - <= 0.50	<= 0.25	
Day	Colder/Equal to -1	Colder/Equal to 30	Light	Light	Light	Moderate	Moderate	Heavy	
	Warmer than -1	Warmer than 30	Light	Light	Moderate	Moderate	Heavy	Heavy	
Night	Colder/Equal to -1	Colder/Equal to 30	Light	Moderate	Moderate	Heavy	Heavy	Heavy	
	Warmer than -1	Warmer than 30	Light	Moderate	Heavy	Heavy	Heavy	Heavy	

LWE Commercial System

- Experimental commercial LWE Systems also include GDI decision support systems called Holdover time Determination System (HDS) and Check-Time System (A time-to-fluid expiration algorithm).
- FAA Flight Standards Service is considering issuance of draft standards and an advisory circular for a commercial system.

ASOS Sensor Pad

