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The Next Generation Air Transportation System (NextGen)
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215t Century
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Responding to the Challenges

An Outlook for the Next
Dggade

En Route

PERFORMANCE-BASED ATM CONCEPT

S ~. N\
» Responsibility for problem prediction
moves from controller to automation

Transition

oo, 0000000
e Automation assists with
sequencing, merging, and
spacing

e Controllers resolve problems with
automated resolution assistance

e Problems are predicted and resolved

strategically e En route flow management

directives smooth transition

e Routine ATC tasks are automated

» Time-based metering used to manage e Automated, high-precision operations
traffic to constrained resources with deconflicted RNP/RNAV routes

« Airspace designed to optimize service e Additional routes designed to increase
and productivity improvements flexibility, efficiency, and capacity




Decision-Making Time Horizons
Strategic vs Tactical
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Airspace Is the Foundation to

Near-term 2015-2020 NextGen Foundation Projects NextGen

» Effectively FILL THE OPERATIONAL GAP

APPLY the « Move from individual
solutions RNAV/RNP routes to large
that we have scale, networked

available implementation
today . . _
» Airspace design balancing
« EXPEDITE operational, resource, security
the m_ogt needs
promising : d adaoti _
and cost-  Agile and adaptive airspace
effective structure
solutions of » Align airspace to function

the future instead of geography



Airspace Configuration Concept

Provide flexibility where possible and structure where needed

Adaptable < >

NONEEXCIUSIGNAIV/EXGIUSIONnANY

High Altitude Airspace
(Generic Airspace)

v

Adaptable

Super Density and
Metroplex Areas

«—>
Adaptable

Exact boundaries will depend on the equipped aircraft and traffic density



Adaptable Airspace

e En route congestion problem

e Structure and boundaries change based on
traffic demand

— Near term;

airspace playbogk concept

Research Issues

 When, how much, and where to change airspace?
 How much advance notice to provide to the operator?



Restructured Airspace

* New airspace categories for advanced
concepts

— Automated separation operations (ground or
alrborne) airspace

— Corridors-in-the-sky

— Dynamic sectors

— Larger alrspace sectors -~ “pssemmm——— _
L ——————



Corridors-in-the-Sky

* Design of tube networks that capture large amount of
traffic and reduce extra flight distance needed

 Small number of corridors and high volume of traffic
corridors
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» Ensure safe | | »+ Manage * Apply Flow Contingency « Design
separation trajectories Management procedures airspace
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Virtual 4D Weather Cube
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Flying LGA to ORD in Weather Noomal
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Fraction

of
Normal
Sector
Capacity

Adaptive ATM

20060727-225400 UTC
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Incrementally define Route and Decision Points
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Fraction

Adaptive ATM Normal
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As the flight progresses, Uncertainty is reduced
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Probabillistic Future Sector
Demand and Capacity Graph
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Uncertainty
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Vianaging congestuon 1o an
Acceptable Level of Risk
(Probability)
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Congestion Resolution Decision
Tree

Decision Decision
Point 1: Point 2:
T — 90 min T — 60 min
Let it ride
: Adjust

Do nothing, wait

-

(o)
100% Let it ride
Partial resolution
: ==========>
Adjust
o,
S0% Let it ride

Full resolution

»

: Adjust

Of the possible decision paths, which one reaches the congestion
~management goal with the least operational impact?

'




Time-Optimal Decision Making

Start:

Set of predicted
trajectories and
corresponding
congestion
probabilities

22

Simulation

Decision Point

Decision Point

Decision Point

Predicted
Congestion

Lines represent Monte-Carlo
ensembles of possible outcomes

Path 0.6-1.0-0.5
mean cost:

EQ) =
Jpp +
E(Jy | Jd1) +

E(Ja1] J21 [ 1)

J;j = resolution cost distribution
at decision point i of option j

T-90 min T-60 min T-30 min

Congestion
Time, T
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En Route Congestion

'\ [ Wit ]
28105
e - .
ZDv03 YRR L <% Uncertain weather forecasts
25 indicate current and future
[2RR 2 loss of airspace capacity...
40-369

<
gj Uncertain traffic forecasts

provide airspace demand...

If demand exceeds capacity,
delays will occur and safety may
be compromised.

ZMEZS

cAaad Given the uncertainty:
% 9 ZMEZ2 When should air traffic be restricted?
e . ST Which flights should be affected?
\//}\ ZME20 ﬁ% How do NAS operators participate?

Congestion Alerts
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Location of the Weather Matters
--- Flow Impact

y

Case A

2

/s
Case B

Probability |

Probability 1

12 16 20 Capacity

"y QI

4 12 20" Capacity



Lincoln Lab Pilot Behavior Analysis
and the WAF Altitude Field
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Developing Concept for Automated Tactical ATC Weather
Avoidance

30 minutes and higher lead time before a flight intersects weather problems: TFM automation uses
weather forecasts to predict congestion, and produces initiatives to reduce volume around weather.
ATC implements initiatives and resolves any near-term conflicts with other aircraft and weather.

20 — 25 minutes lead time: ATC automation responds to proactive requests
via data link for reroutes around weather.

30 min. 25 min.

Up to 20 minutes lead time: ATC automation uses weather forecasts to predict aircraft to
convective weather intersections and generates resolutions that avoid other aircraft and
weather. Clearances are automatically distributed to data link equipped flights. Pilots have
the option to request changes to the route, including requesting a route back through the
weather.
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Example of NASA Weather ATM Integration
Research

Movie loop shows one way to adjust
to enroute storms



Weather Avoidance Algorithms for En Route Aircraft

1 Flow
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Weather Avoidance Algorithms for En Route Aircraft

> > >

2 Flows
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Weather Avoidance Algorithms for En Route Aircraft

> > >

¥ > > L
Y >

3 Flows
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Weather Avoidance Algorithms for En Route Aircraft

> ¥ >
L i S
Too Close!
Violation of Sector Boundary Constraint!
4 Flows

- Are 3 Routes through the Sector a Maximum?
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Algorithm: Mincut (Deterministic)

1. Airspace with Hazardous Weather Constraints
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Algorithm: Mincut (Deterministic)

2. Define Critical Graph — connect closest points (B, T, a =2 Q)
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Algorithm: Mincut (Deterministic)

2. Define Critical Graph — connect closest points

Assign cost using floor T’ | x ] function
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Algorithm: Mincut (Deterministic)

3. Search for Shortest Path Tree within Critical Graph
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Algorithm: Mincut (Deterministic)

3. Search for Shortest Path Tree
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Algorithm: Mincut (Deterministic)

4. Shortest B-T Path in Shortest Path Tree defines the mincut

T mincut

/

ﬁ

- >
=sh

\

B mincut
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Algorithm: Mincut (Deterministic)
5. Find maximum number of air lanes through the mincut

! /

mincut

B mincut
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Max Capacity

Maximum Number of Air Lanes at Bottleneck

| {) -
@ 3 Planned Air Lanes
(*)
(*)
L1500 L1515 1530 1545
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Max Capacity

Maximum Number of Air Lanes at Bottleneck
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Max Capacity
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Max Capacity

L1545

1600
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Example of NASA Weather ATM Integration
Research

Movie loop shows one way to adjust
to enroute storms



Weather Avoidance Algorithms for En Route Aircraft

1 Flow
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Weather Avoidance Algorithms for En Route Aircraft

> > >

2 Flows
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Weather Avoidance Algorithms for En Route Aircraft

> > >
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Y >

3 Flows
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Weather Avoidance Algorithms for En Route Aircraft

> ¥ >
L i S
Too Close!
Violation of Sector Boundary Constraint!
4 Flows

- Are 3 Routes through the Sector a Maximum?
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Algorithm: Mincut (Deterministic)

1. Airspace with Hazardous Weather Constraints
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Algorithm: Mincut (Deterministic)

2. Define Critical Graph — connect closest points (B, T, a =2 Q)
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Algorithm: Mincut (Deterministic)

2. Define Critical Graph — connect closest points

Assign cost using floor T’ | x ] function
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Algorithm: Mincut (Deterministic)

3. Search for Shortest Path Tree within Critical Graph
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Algorithm: Mincut (Deterministic)

3. Search for Shortest Path Tree




Algorithm: Mincut (Deterministic)

4. Shortest B-T Path in Shortest Path Tree defines the mincut

T mincut

/

ﬁ
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=sh

\

B mincut
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Algorithm: Mincut (Deterministic)
5. Find maximum number of air lanes through the mincut

! /

mincut

B mincut
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Max Capacity

Maximum Number of Air Lanes at Bottleneck

| {) -
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Max Capacity
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Max Capacity
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Max Capacity

L1545

1600
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Max Capacity

L1545

1600
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Max Capacity

L1545

1600

62



Max Capacity

L1545

1600
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Max Capacity

L1545

1600
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Max Capacity

L1545

1600
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Max Capacity

L1545
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Max Capacity

L1545
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Max Capacity
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Max Capacity

-
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)

A

weather coveraoe




avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)

weather coveraoe
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)

wWea T.]'li"]‘ coveraoe )
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)
Mixed-RNP Demand

Want 3
Air Lanes

Want 2

Air Lanes

weather coveraoe

Want 2
Air Lanes

Sorry, PBS-rules... Advisory sent out via SWIM
to restrict traffic to RNP-3 and RNP-5 only
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)
Mixed-RNP Demand

|
Wy Want 3 \/
Air Lanes

06 07

weather g raoe

W t2 Sorry, PBS-rules... Advisory sent out via SWIM
Ir Lanes to restrict traffic to RNP-3 and RNP-5 only
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Unidirectional Flows
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Free Flight (Monotonic Rule)

75



Platooning of 1

N 2 e ke
~ T .

Free Flight (Unidirectional Rule)
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Platooning of 2
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Free Flight (Unidirectional Rule)




Platooning of 3

Free Flight (Unidirectional Rule)
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Platooning of N - Flow-Based Route Planning
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Free Flight (Unidirectional Rule)

Packed Unidirectional Flow
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Example of NASA Weather ATM Integration
Research

Movie loop shows one way to adjust
to enroute storms



Weather Avoidance Algorithms for En Route Aircraft

1 Flow
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Weather Avoidance Algorithms for En Route Aircraft

> > >

2 Flows
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Weather Avoidance Algorithms for En Route Aircraft

> > >

¥ > > L
Y >

3 Flows
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Weather Avoidance Algorithms for En Route Aircraft

> ¥ >
L i S
Too Close!
Violation of Sector Boundary Constraint!
4 Flows

- Are 3 Routes through the Sector a Maximum?
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Algorithm: Mincut (Deterministic)

1. Airspace with Hazardous Weather Constraints
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Algorithm: Mincut (Deterministic)

2. Define Critical Graph — connect closest points (B, T, a =2 Q)
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Algorithm: Mincut (Deterministic)

2. Define Critical Graph — connect closest points

Assign cost using floor T’ | x ] function

87



Algorithm: Mincut (Deterministic)

3. Search for Shortest Path Tree within Critical Graph

88



Algorithm: Mincut (Deterministic)

3. Search for Shortest Path Tree
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Algorithm: Mincut (Deterministic)

4. Shortest B-T Path in Shortest Path Tree defines the mincut

T mincut

/

ﬁ

- >
=sh

\

B mincut
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Algorithm: Mincut (Deterministic)
5. Find maximum number of air lanes through the mincut

! /

mincut

B mincut
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Max Capacity
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Max Capacity
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Max Capacity

Maximum Number of Air Lanes at Bottleneck

- g @ @ 3 Planned Air Lanes
(>)(3)(>)

SO0

L1500 1515 L1530 1545

1600

94



Max Capacity
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Max Capacity
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Max Capacity
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Max Capacity
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Max Capacity
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Max Capacity

L1545 1600
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Max Capacity

L1545 1600
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Max Capacity

L1545 1600
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Max Capacity

-y

Maximum Number of Air Lanes at Bottleneck

! (>) (33(>) () 3 Planned Air Lanes
000001010 ()
0000000000100
HEEEEEEEEEEE)

500 L1515 L530 L1545 1600

—

103



Max Capacity
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)

A

weather coveraoe
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)

weather coveraoe
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)

wWea T.]'li"]‘ coveraoe )
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)
Mixed-RNP Demand

Want 3
Air Lanes

Want 2

Air Lanes

weather coveraoe

Want 2
Air Lanes

Sorry, PBS-rules... Advisory sent out via SWIM
to restrict traffic to RNP-3 and RNP-5 only
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avg. number of lanes

Variations in the Size of the Gap (RNP Requirement)
Mixed-RNP Demand
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Unidirectional Flows
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Free Flight (Monotonic Rule)
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Platooning of 1

N 2 e ke
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Free Flight (Unidirectional Rule)
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Platooning of 2
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Free Flight (Unidirectional Rule)
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Platooning of 3

Free Flight (Unidirectional Rule)
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Platooning of N - Flow-Based Route Planning
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Free Flight (Unidirectional Rule)

Packed Unidirectional Flow
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Operations



Now to NextGen

*Mitigation Today
*Procedural
*Manual process
*Tendency to be reactive

Mid-Term — Improved Integration utilizing mature technology

sImproved techniques to decision-making
*Remains manual in coordination and implementation
» Tendency to be more Pro-active

NextGen — New Integrated Technology
*Technology assisted decision-making
sAutomated processes
*Common information exchange

Integrated
decision — support system

Reactive Pro-active Automated Assisted

Evaluation & Exploratory
(expanded time-horizons)
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