Friends and Partners in Aviation Weather

A Day In the life of the Aviation System Under NextGen

July 2008

Bill Leber

The Next Generation Air Transportation System (NextGen) Plan Defines A System That Can Meet Demands For The 21st Century

Responding to the Challenges An Outlook for the Next

Airspace is the Foundation to the Future

2015-2020 NextGen Foundation Projects

NextGen

 Effectively <u>APPLY</u> the solutions that we have available today

Near-term

• <u>EXPEDITE</u> the most promising and costeffective solutions of the future

FILL THE OPERATIONAL GAP

- Move from individual RNAV/RNP routes to large scale, networked implementation
- Airspace design balancing operational, resource, security needs
- Agile and adaptive airspace structure
- Align airspace to function instead of geography

Airspace Configuration Concept

Exact boundaries will depend on the equipped aircraft and traffic density

Adaptable Airspace

- En route congestion problem
- Structure and boundaries change based on traffic demand

Research Issues

- When, how much, and where to change airspace?
- How much advance notice to provide to the operator?

Restructured Airspace

- New airspace categories for advanced concepts
 - Automated separation operations (ground or airborne) airspace
 - Corridors-in-the-sky
 - Dynamic sectors
 - Larger airspace sectors

Corridors-in-the-Sky

- Design of tube networks that capture large amount of traffic and reduce extra flight distance needed
- Small number of corridors and high volume of traffic corridors

Scenario 1 Preplanning

Seconds

Years

Virtual 4D Weather Cube

Flying LGA to ORD in Weather

Fraction of Normal Sector Capacity

20060727-225400 UTC

Incrementally define Route and Decision Points

Fraction of

Normal Sector Capacity

20060727-225400 UTC

Fraction of

Normal Sector Capacity

20060727-225400 UTC

As the flight progresses, Uncertainty is reduced

Fraction of

Normal Sector Capacity

20060727-225400 UTC

Fraction

of Normal Sector Capacity

Probabilistic Future Sector Demand and Capacity Graph

Sector 02

Managing Congestion to an Acceptable Level of Risk (Probability)

Congestion Resolution Decision Tree

Of the possible decision paths, which one reaches the congestion management goal with the least operational impact?

Time-Optimal Decision Making Simulation

MES361 AR19 223 A86 E21:25

FLG5814 LAYNE AT 40292 A53 E21:20

¥

Scenario 2 Enroute

En Route Congestion

Lincoln Lab Pilot Behavior Analysis and the WAF Altitude Field

Developing Concept for Automated Tactical ATC Weather Avoidance

Up to 20 minutes lead time: ATC automation uses weather forecasts to predict aircraft to convective weather intersections and generates resolutions that avoid other aircraft and weather. Clearances are automatically distributed to data link equipped flights. Pilots have the option to request changes to the route, including requesting a route back through the weather.

Example of NASA Weather ATM Integration Research

Movie loop shows one way to adjust to enroute storms

1 Flow

2 Flows

3 Flows

Algorithm: Mincut (Deterministic)

1. Airspace with Hazardous Weather Constraints

Algorithm: Mincut (Deterministic)

2. Define Critical Graph – connect closest points (B, T, $a \rightarrow g$)

3. Search for Shortest Path Tree within Critical Graph

4. Shortest B-T Path in Shortest Path Tree defines the mincut

5. Find maximum number of air lanes through the mincut

Example of NASA Weather ATM Integration Research

Movie loop shows one way to adjust to enroute storms

1 Flow

2 Flows

3 Flows

1. Airspace with Hazardous Weather Constraints

2. Define Critical Graph – connect closest points (B, T, a \rightarrow g)

3. Search for Shortest Path Tree within Critical Graph

4. Shortest B-T Path in Shortest Path Tree defines the mincut

5. Find maximum number of air lanes through the mincut

Variations in the Size of the Gap (RNP Requirement)

Variations in the Size of the Gap (RNP Requirement)

Variations in the Size of the Gap (RNP Requirement)

Variations in the Size of the Gap (RNP Requirement) Mixed-RNP Demand

Variations in the Size of the Gap (RNP Requirement) Mixed-RNP Demand

Unidirectional Flows

Free Flight (Monotonic Rule)

Platooning of 1

Free Flight (Unidirectional Rule)

Platooning of 2

Free Flight (Unidirectional Rule)

Platooning of 3

Free Flight (Unidirectional Rule)

Platooning of N → Flow-Based Route Planning

Free Flight (Unidirectional Rule)

Example of NASA Weather ATM Integration Research

Movie loop shows one way to adjust to enroute storms

1 Flow

2 Flows

3 Flows

1. Airspace with Hazardous Weather Constraints

2. Define Critical Graph – connect closest points (B, T, $a \rightarrow g$)

3. Search for Shortest Path Tree within Critical Graph

4. Shortest B-T Path in Shortest Path Tree defines the mincut

5. Find maximum number of air lanes through the mincut

Variations in the Size of the Gap (RNP Requirement)

Variations in the Size of the Gap (RNP Requirement)

Variations in the Size of the Gap (RNP Requirement)

Variations in the Size of the Gap (RNP Requirement) Mixed-RNP Demand

Variations in the Size of the Gap (RNP Requirement) Mixed-RNP Demand

Unidirectional Flows

Free Flight (Monotonic Rule)

Platooning of 1

Free Flight (Unidirectional Rule)

Platooning of 2

Free Flight (Unidirectional Rule)

Platooning of 3

Free Flight (Unidirectional Rule)

Platooning of N \rightarrow Flow-Based Route Planning

Free Flight (Unidirectional Rule)

Packed Unidirectional Flow

Scenario 3

New York Arrival and Departure Super Density Operations

Now to NextGen

Credits

- FAA/JPDO
- Metron
- MITRE
- MIT/Lincoln Labs
- NASA

🕌 aweikle-0.0

Integrated Traffic and Weather for Departure Planning

	LONGED US							*		~0.41
		📋 Integr	ated De	parture Route	e Planner					
		-Display T	уре		⊖ <u>w</u> e	eather a	nd Troffi			18:58z Fixes Routes
		Aircraft ID	Origin	Destination	Departure Fix		Sector	Departure Time	Departure Time Status 1900190519101915192019251	J6 J36 J48
		COA474	EWR	тјеј	PARKE	J6	ZNY39	1906		▲ J60 J64
		LOF7980	EWR	IAD	PARKE	J6	ZNY39	1911		- J80 J95
		MEP83	LGA	мсі	PARKE	J6	ZNY55	1913		J174 J209
		EGF825	LGA	XNA	PARKE	J6	ZNY55	1918		J230 V419
	KWAVEY.J174	AAL555	LGA	STL	PARKE	J6	ZNY55	1922		V457
CO CO	NJ	COA99	EWR	ИНН	PARKE	J6	ZNY39	1925		
		MEP306	LGA	MKE	COATE	J36	ZNY36	1904		
		AAL307	LGA	ORD	COATE	J36	ZNY36	1909		
	LGA.VHITE.J79	PDT4385	LGA	BUF	COATE	J36	ZNY36	1922		Sectors
		DAL34	EWR	ATL	LANNA	J48	ZNY55	1900		👻 Clear sel

Integrated Traffic and Weather for Departure Planning

	LONGED US							*		~0.41
		📋 Integr	ated De	parture Route	e Planner					
		-Display T	уре		⊖ <u>w</u> e	eather a	nd Troffi			18:58z Fixes Routes
		Aircraft ID	Origin	Destination	Departure Fix		Sector	Departure Time	Departure Time Status 1900190519101915192019251	J6 J36 J48
		COA474	EWR	тјеј	PARKE	J6	ZNY39	1906		▲ J60 J64
		LOF7980	EWR	IAD	PARKE	J6	ZNY39	1911		- J80 J95
		MEP83	LGA	мсі	PARKE	J6	ZNY55	1913		J174 J209
		EGF825	LGA	XNA	PARKE	J6	ZNY55	1918		J230 V419
	KWAVEY.J174	AAL555	LGA	STL	PARKE	J6	ZNY55	1922		V457
CO CO	NJ	COA99	EWR	ИНН	PARKE	J6	ZNY39	1925		
		MEP306	LGA	MKE	COATE	J36	ZNY36	1904		
		AAL307	LGA	ORD	COATE	J36	ZNY36	1909		
	LGA.VHITE.J79	PDT4385	LGA	BUF	COATE	J36	ZNY36	1922		Sectors
		DAL34	EWR	ATL	LANNA	J48	ZNY55	1900		👻 Clear sel