Next Generation Air Transportation System Joint Planning and Development Office

JPDO Weather IPT Observations and Sensors Team Friends and Partners Vision Meeting

John Murray (NASA Langley Research Center) Mark Weber (MIT Lincoln Laboratory) September 12, 2005

Observational Needs

- More capable, higher resolution weather forecast models require more not fewer observations
- Key observational needs
 - Improved coverage, density and data quality in planetary boundary layer
 - Atmospheric state variable measurements in and beneath clouds
 - Higher density measurements in frontal zones
 - Special measurements supporting unique aviation needs (e.g. de-icing decision support)

Next Generation Air Transportation System Joint Planning and Development Office

000

Weather IPT Structure Sub Team Responsibilities

Observations	Forecasts	Dissemination	Integration	Training	Mitigation
Inventory existing programs Conduct trades/cost- benefit analysis Align programs to support IPT vision Determine optimum mix of space-, airborne-, and ground based observation systems Review/update observation policies	Develop NGATS requirements Inventory existing programs Conduct trades/cost- benefit analysis Align programs to support IPT vision Prepare and implement forecast roadmap supporting delivery of probabilistic gridded information	Develop NGATS database requirements Inventory agency/industry efforts Prepare and implement roadmap designed to deliver national weather information network by 2012, with probabilistic capability by 2015 Work closely with AATS and SA IPTs	Develop NGATS requirements Inventory existing programs Conduct trades/cost- benefit analysis Define and document system interfaces (ICD) Create and implement govt/industry roadmap for weather decision support tool development	Evaluate agency aviation weather training activities Develop and implement policy and procedures to provide weather training for each NGATS decision maker Institutionalize weather training and orientation visits to enforce understanding of opertional needs Evaluate need for NGATS proficiency requirements	Define aircraft specific transformation needs and requirements - Turbulence - Icing - Synthetic Vision - Gust Alleviation - Vortex Suppression

Obs & Sensors Sub-Team Composition

- Current organizations represented:
 - FAA & FAA AWRP PDT's
 - NASA Aeronautics and Science Mission Directorates
 - NOAA NWS, NESDIS, OS&TP, FSL & Space Env Lab
 - OFCM
 - MIT Lincoln Laboratory
 - NCAR
 - University of Wisconsin/NOAA CIMSS
- Target, future additions:
 - Private weather vendors
 - Customer organizations (e.g. airlines, GA)

Unique Aviation Weather Measurement Requirements

The Observations and Sensors Sub-Team supports the full range of aviation weather forecasting, mitigation, and ATS Integration requirements for:

- Detection, characterization and forecast of both severe and non-severe thunderstorms
 - spatial and temporal accuracies sufficient to determine the availability of individual flight routes and thereby the capacity of en route sectors and terminal facilities
- Support for multi-hour ceiling and visibility forecasting
- Convective and clear air turbulence
- Measurements supporting weather dependent adaptation of wake
 vortex separation standards
- Measurements supporting in-flight icing and ground deicing decisions
- Measurements supporting volcanic eruption, ash cloud detection and drift forecasting

Key Observing Systems Current and Future

- Space Based
 - Geostationary Environmental Satellites
 - Low/Mid-Earth Orbit Environmental Satellites
- Airborne
 - In-situ sensors
 - On-board weather radars
 - Other remote sensors
- Ground Based
 - Weather Radars
 - Surface Stations
 - Profilers

Space- based Observations

- Space-based observations underpin numerical weather models today
 - Geostationary Operational Environmental Satellite soundings
 - Polar-orbiting Operational Environmental Satellite soundings
- Satellite observations will play an ever increasing, critical role in populating the aviation weather information network
 - GOES is singularly capable of providing seamless, dense temporal and spatial framework
 - NPOESS will provide higher resolution but incomplete spatial and temporal coverage
 - MEO satellites in both polar and equatorial orbits may possibly address this gap
- Strong advocacy for high resolution profiles of temperature, water vapor, microphysics and chemistry observations from GEO satellites is required

Satellite Observation Decision Points

- Near Term (now-2008)
 - Adequate GOES-R Sounder Requirements?
 - Identification of additional capabilities needed for GOES and NPOESS, Eg. GEO Lightning, POES Aerosol and Chemistry
- Mid Term (2008-2015)
 - Affect design and planning for future GEO and MEO satellites to ensure high resolution aviation weather observation requirements
- Long Term (2015-2025)
 - Deploy and integrate next-generation satellite systems

Airborne Observations

- Airborne in situ observations currently fill critical sounding gaps for numerical aviation weather forecast and nowcast models and terminal aerodrome forecasts for severe weather
 - MDCRS
 - TAMDAR
- Increased coverage by airborne observations can help overcome insufficient temporal and spatial resolution of ground and space based systems
 - In situ soundings from more airports needed
 - Source of dense airborne soundings in regions of active and incipient severe weather is a significant gap that needs to be addressed
 - Airborne radar observations need to be integrated
- Trade studies are needed to produce an integrated roadmap for aircraft and ROA/UAV observations needed to fill critical gaps between ground and space-based systems

Airborne Observation Decision Points

- Near Term (now-2008)
 - Significantly expand AMDAR profiling observations
 - Develop airborne observation strategy to fill critical gaps between ground and space-based profiling architecture
 - Study adequacy of airborne radar observations for integration with ground-based radar observations
- Mid Term (2008-2015)
 - Airborne technology development to fill atmospheric profile observation gaps for numerical weather prediction and nowcasts, E.g., severe weather, icing, turbulence, volcanic ash
 - Commence acquisition of capability
- Long Term (2015-2025)
 - Deploy and integrate aircraft and ROA/UAV sensors

Surveillance Radar Network

- Ground based weather radar networks are an essential part of today's severe weather observing system
 - NEXRAD
 - TDWR
 - ASR-9/ASR-11 Weather Processors
- Changing surveillance paradigms will force substantial evolution by 2025
 - Cooperative ATC surveillance
 - Homeland defense air situational awareness
 - Enhanced weather radar
- An integrated roadmap for the sustainment, evolution and replacement of today's ground based surveillance radar network is required

Multifunction Surveillance Radar

Multifunction Radar

- Cost reductions
 - Fewer radars, non-rotating
- Substantive new capabilities realized
 - Temporal, spatial resolution improvements
 - New measurement capabilities (e.g. full wind vector)

Surveillance Radar Network Decision Points

- Near Term (now-2008)
 - Future surveillance architecture
 - Sustainment and evolution programs for existing radar networks
 - OFCM multifunction phased array radar R&D plan
 - CASA "dense boundary layer radar network" concept
- Mid Term (2008-2015)
 - Execute sustainment and evolution programs
 - Commence acquisition of replacement network(s)
- Long Term (2015-2025)
 - Deploy and integrate replacment networks

Summary of Obs Priorities

- Optimize obs and sensor acquisition strategies by obtaining JPDO support for obs team trade studies
- Realize Potential Near Term Successes
 - GOES R sounder adequacy
 - TAMDAR expansion throughout CONUS
 - DOD satellite data for volcanic early warning
 - National Radar Network Plan