Emerging Needs of Turbulence Guidance

For Increasing Non-Traditional Flight Operations

Matthias Steiner

National Center for Atmospheric Research msteiner@ucar.edu

NCAR

RESEARCH APPLICATIONS LABORATORY 4th Turbulence Mitigation Workshop on 8 – 10 November 2021

Evolving Aviation & Aerospace Industry

- Advanced air mobility (e.g., UAS, UAM)
- Wide variety of aerial vehicles & mission profiles

Evolving Aviation & Aerospace Industry

High-altitude operations

- Space launch & reentry
- Super/hypersonic travel
- Balloons & pseudo-satellite UAS

AIRBUS

Boundary layer

Muñoz-Esparza et al. (2021)

- Particularly dynamic in lowest levels of atmosphere
 - wide range of processes & scales yield variable wind & turbulence
- Less predictable at high resolution & specific locations
 - especially in complex environments, like urban landscapes

Weather & Changing Climate

Stratosphere

summer hemisphere

mesospheric

Fasterlies

- Varying tropopause height - 9 km at poles, 16-17 km in tropics
- Seasonally changing wind regimes •
- Hazardous conditions may result from
 - rapidly changing wind conditions
 - vertical propagation of gravity waves generated by mountains or thunderstorms
 - turbulence from breaking waves or dynamic shear instabilities

Meridional cross section

stratopause

winter hemisphere

westerlies

F70 mesospheric

Encyclopedia Britannica (2008)

height

(kilometres)

60

height (1,000s of ft)

Weather & Changing Climate

🚉 External

Evolving climate system

- Intensifying jet stream
 - stronger winds & turbulence
- More frequent & intensifying thunderstorms
 changing storm tracks & deeper storms
 - more lightning, hail, rain, wind & turbulence
- More heat waves & drier conditions
 reduced lift for takeoff
 - increased low-level turbulence
 - increased wildfires & pyrocumulonimbus

Prein et al. (2017)

Expected changes in MCS characteristics

ANSP

Weather sensitivities

- Specific to type of aerial vehicle & mission
 - need to understand performance limitations & mission aspects
- Controllability under windy & turbulent conditions
 - safety of flight, platform stability, fuel/energy management, wake vortices, etc.
- Infrastructure & operational resilience to weather impacts
 - airlines learned how to cope with weather impacts how about new entrants?

Weather guidance

- Limited routine weather guidance for low- & high-altitude operations
- Predictions build upon scientific understanding of environment
 - need more observations in boundary layer & stratosphere
 - need to understand requirements for spatial & temporal resolution, refresh rate, look ahead times, etc.
 - predictability limits may require probabilistic forecasting
- Responsibility for providing necessary weather guidance

Regulatory aspects

- Certification of novel aircraft
 - automation & autonomy rely on sensed data & algorithms

Summary

Key Points

- Aviation/aerospace industry is evolving rapidly
- Novel & resurgent operations exhibit unique weather sensitivities
- Improved weather guidance needed to support these emerging operations
- Scientific understanding of low & high altitude operational environments necessary to develop actionable weather guidance
- Environmental challenges must inform aircraft design & certification, operational procedures & regulations, training, etc.
- Evolving climate will likely amplify existing & bring new weather challenges for operations & infrastructure

Resilient Operations

- Need to focus on enhanced predictability, efficiency, reliability & sustainability of aviation operations
- Weather needs to be an integral part of infrastructure & operations planning, & decision making
- Collaboration across disciplinary boundaries is essential for developing effective solutions
- Dast
- Agile prototyping & testing beneficial to accommodate evolving industry needs

The views expressed are those of the presenter and do not necessarily reflect the position of the funding agencies.

& several other sponsors

