

Mountain Wave Turbulence and Predictability James D. Doyle U.S. Naval Research Laboratory, Monterey, CA

Outline

- Background
- Lee Waves and Rotors
- Wave Breaking
- Modeling and Predictability
- Summary

Acknowledgements: Qingfang Jiang (NRL), Clark Amerault (NRL), A. Dörnbrack (DLR), D. Durran (UW), S. Eckermann (NRL-DC), D. Fritts (Gats), Bart Geerts (U. Wyoming), Vanda Grubišić (NCAR), T. Lane (Monash), R. Sharman (NCAR), R. Smith (Yale), M. Taylor (Utah St.), M. Weissmann (DLR)

Mountain Wave Turbulence Climatology

Normalized PIREPS (MOG/Total) Percent of MOG MWT to Total PIREPs 1995-2005 (Wolff and Sharman 2008) above FL180 (5.5 km) (12 YR) Wolff and Sharman (2008) 5 3 0-.5 .7 .9 1.3 1.5 1.1

- When stably stratified air is forced over a barrier a disturbance is created and energy is carried away by internal gravity waves or mountain waves.
- Major source of turbulence over the western U.S. is due to mountain wave turbulence (MWT)
- Correlation of the normalized MOG MWT pattern is apparent with topographic heights greater than about 1.5 km, consistent with previous studies (Reiter and Foltz 1967; Nicholls 1973, Lee et al. 1984)

Lee Waves and Turbulence

Mountain lee waves are generally laminar though can be turbulent occasionally

- Trapped wave generated by flow over narrow terrain of Alps beneath a "leaky" wave duct.
- Wave duct enhanced by upstream moist processes.

Doyle and Smith (2003) QJRMS

Rotors: T-REX

Subrotor Vortices During the Terrain-Induced Rotor Experiment

Large Eddy Simulations of rotors underscores the key characteristics including flow separation, elevation of vortex street, and development of KH billows or sub-rotors downstream

Doyle, Grubišić, Brown, De Wekker, Dörnbrack, Jiang, Mayor, Weissmann, 2009, JAS

Hydraulic Jumps and Rotors

- Internal hydraulic jump vs. low-level wave breaking paradigms
- Characteristics of turbulence and relationship to vortex breakdown are important

Low-Level Wave Breaking

Model

TKE (m² s⁻²)

88.6

19.2

20.5

1.7

13.3

- LES modeling of wave breaking and turbulent eddy shedding
- Turbulent eddies embedded within the low-level breaking region

Upper-Level Wave Breaking and Turbulence

Wave Breaking over New Zealand (DeepWave)

U.S. NAVAL

Wave Breaking over Greenland

- Observed turbulent upper-level wave breaking (and mixing in UTLS)
- Real world complex flows (cyclones with time-dependent forcing)

Critical Levels and Wave Breaking Turbulence

850 hPa

U.S. NAVAL

100 hPa

Low-level easterly flow and critical level (background) present. Sloping layers of wave overturning and turbulent breaking.

Lane et al. 2009

High-Altitude Wave Breaking and Turbulence

DEEPWAVE G-V Flight Over Auckland Island DEEPWAVE RF23 14 July 2014 10 11 9 flight time (hours UTC) 188 H 18 H 18 H 18 H 0.0 0.5 1.0 1.5 2.0 2.5 3.0 terrain elevation (km) Eckermann et al. (2016)

U.S.NAVAL

G-V AMTM Observations (~87 km)

Pautet et al. 2015 (JGR)

Relatively small mountains and terrain may be important sources of gravity waves and upper-level turbulence

U.S.NAVAL RESEARCH

- Explicit and LES 2D modeling of wave breaking and secondary wave generation
- Models still disagree radically for relatively simple problems (e.g., model error)

• Upstream sounding used to initialize 2D COAMPS (dry) with surface friction (NH/U~2.5-3.0)

U.S.NAVAL

• Strong downslope winds (~25 ms-1) and wave breaking in the lower stratosphere at 4-h time

Adjoint allows for the mathematically rigorous calculation of forecast sensitivity of a response function to initial state
Response function is the u-wind along the lee slopes in the lowest 725 m (lowest 9 levels)

Sensitivity of downslope winds during T-REX highlight the key role of:

U.S.NAVAL RESEARCH

- Upstream stability (key sensitivity), wind at crest height, in UTLS upstream of breaking, and the boundary layer
- 1°C warming upstream of crest leads to a ~50% larger increase in downslope winds than a 1 m s⁻¹ wind increase
- Increased turbulence (TKE) in the UTLS in wave breaking layers

Reinecke and Durran (2009)

- •70-member ensemble simulation of a large-amplitude mountain wave during T-REX
- Strong-member subset: Large-amplitude breaking mountain wave with an extensive region of turbulent mixing directly above and to the lee of the Sierra.
- •Weak-member subset: Wave breaking and turbulence are limited to a small region in the upper troposphere lower stratosphere
- Differences in the synoptic-scale forcing are small

U.S. NAVA

Summary

- Measurements (research aircraft, PIREPS) and numerical simulations show a rich spectrum of responses including MWT (wave breaking) that results from flow over large-scale (e.g., Greenland) and complex terrain (e.g., Alps, Sierra, New Zealand Alps).
- Rotors occur when strong downslope flow in the boundary layer along the lee slopes separate from the surface as a turbulent vortex sheet creating strong turbulence and sub-rotors.
- Adjoint model results indicate that mountain wave turbulence is highly sensitive to stability and winds upstream of the mountain crest and in the UTLS upstream of breaking layers.
- The predictive skill of numerical forecasts of MWT observed in nature is encouraging and has improved with increases in fidelity of the models.
- Ultimately, high-resolution ensemble methods that are capable of explicitly resolving mountain waves should be used to provide probabilistic forecasts of turbulence needed for aviation hazard mitigation.