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Mountain Wave Turbulence Climatology
Normalized PIREPS (MOG/Total)

1995-2005 (Wolff and Sharman 2008)
Percent of MOG MWT to Total PIREPs 

above FL180 (5.5 km) (12 YR)               
Wolff and Sharman (2008)

• When stably stratified air is forced over a barrier a disturbance is created and energy is carried away 
by internal gravity waves or mountain waves.

• Major source of turbulence over the western U.S. is due to mountain wave turbulence (MWT) 
• Correlation of the normalized MOG MWT pattern is apparent with topographic heights greater than 

about 1.5 km, consistent with previous studies (Reiter and Foltz 1967; Nicholls 1973, Lee et al. 1984)
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Lee Waves and Turbulence

• Mountain lee waves are generally laminar though can be turbulent occasionally
• Trapped wave generated by flow over narrow terrain of Alps beneath a “leaky” wave duct.
• Wave duct enhanced by upstream moist processes.
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Rotors: T-REX
Subrotor Vortices During the Terrain-Induced Rotor Experiment

Doyle, Grubišić, Brown, De Wekker, Dörnbrack, Jiang, Mayor, Weissmann, 2009, JAS

COAMPS LES Simulation
2100 UTC 16 April 2007

[30 min. period, ∆x=60 m]

η Vorticity (color)
η = 0.15 s-1 (red)
η = 0.02 s-1 (gray)

Large Eddy Simulation (60m) Doppler Lidar Velocities

Large Eddy Simulations of rotors underscores the key characteristics including flow separation, 
elevation of vortex street, and development of KH billows or sub-rotors downstream
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Hydraulic Jumps and Rotors

Armi and Meyer (2011)

• Internal hydraulic jump vs. low-level wave breaking paradigms
• Characteristics of turbulence and relationship to vortex breakdown are important

Strauss et al. (2016) 

Hydraulic Analogue Wave Breaking / Rotor  Regime



6DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Aircraft Observations of w

LES Wind and Vertical Velocity at 400 m 
(Terrain in Red Contours)  ∆x=150 m

SARJET (Alaska)
UW KingAir Flight Path

Low-Level Wave Breaking

• LES modeling of wave breaking and turbulent eddy shedding
• Turbulent eddies embedded within the low-level breaking region

Bond et al. (2006)
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Upper-Level Wave Breaking and Turbulence
Wave Breaking over New Zealand (DeepWave)

• Observed turbulent upper-level wave breaking (and mixing in UTLS)
• Real world complex flows (cyclones with time-dependent forcing)

Smith et al. (2016)

Wave Breaking over Greenland

Doyle et al. (2005)
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1729Z 19 Feb 2000

• Low-level easterly flow and critical level 
(background) present.

• Sloping layers of wave overturning and turbulent 
breaking.

Critical Levels and Wave Breaking Turbulence

Lane et al. 2009

COAMPS Simulation (5 km)
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G-V AMTM Observations (~87 km)

Eckermann et al. (2016)

DEEPWAVE G-V Flight Over
Auckland Island

Relatively small mountains and terrain may be important sources 
of gravity waves and upper-level turbulence

Pautet et al. 2015 (JGR)

High-Altitude Wave Breaking and Turbulence
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• Explicit and LES 2D modeling of wave breaking and secondary wave generation
• Models still disagree radically for relatively simple problems (e.g., model error)

Model Intercomparison of Wave Breaking [w (m s-1)]

Doyle et al. (2011)

Mountain Wave Turbulence Predictability
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Mountain Wave Turbulence Predictability
2D Dry COAMPS (∆x=1 km, 95L) (Adjoint 2-4h)

Upstream Sounding at 21Z 25 March 2006 U (color fill, m/s), U<0 (hatching), θ (contours, K)
2 h

4 h

U<0 

U<0 

Response Function (u)

θ (K)
U (m s-1)

U (m s-1)
θ (K)

He
ig

ht
 (m

)

• Upstream sounding used to initialize 2D COAMPS (dry) with surface friction (NH/U~2.5-3.0)
• Strong downslope winds (~25 ms-1) and wave breaking in the lower stratosphere at 4-h time
• Adjoint allows for the mathematically rigorous calculation of forecast sensitivity of a response function to initial state
• Response function is the u-wind along the lee slopes in the lowest 725 m (lowest 9 levels)
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Mountain Wave Turbulence Predictability

Sensitivity of downslope winds during T-REX highlight the key role of: 
• Upstream stability (key sensitivity), wind at crest height, in UTLS upstream of breaking, and the boundary layer
• 1°C warming upstream of crest leads to a ~50% larger increase in downslope winds than a 1 m s-1 wind increase
• Increased turbulence (TKE) in the UTLS in wave breaking layers

θ Sensitivity; θ (contours, K)  

U-Wind Sensitivity; U (contours, m s-1) 

Adjoint Sensitivity (2h)

Stronger winds 
leads to stronger 
downslope winds

Stronger stability 
leads to stronger 
downslope winds

{

Sensitivity to wave 
breaking

Sensitivity 
upstream of wave 
breaking

U’ (color, m s-1); θ (black, K); θ+θ’ (red, K)
Adjoint Perturbations (4h)

θ+θ'
θ

U’max~6 ms-1

Perturbation 
growth in UTLS 
with wave breaking 
and downslope 
winds

TKE Perturbations (TKENL-TKETL) (color); θNL (black)

Two regions of 
enhanced wave 
breaking and 
turbulence in UTLS
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•70-member ensemble simulation of a large-amplitude mountain wave during T-REX
•Strong-member subset: Large-amplitude breaking mountain wave with an extensive region of 
turbulent mixing directly above and to the lee of the Sierra. 

•Weak-member subset:  Wave breaking and turbulence are limited to a small region in the upper 
troposphere lower stratosphere 

•Differences in the synoptic-scale forcing are small

Reinecke and Durran (2009)

MWTMWT

Weak Members Strong Members

Mountain Wave Turbulence Predictability



14DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

• Measurements (research aircraft, PIREPS) and numerical simulations show a rich spectrum of 
responses including MWT (wave breaking) that results from flow over large-scale (e.g., Greenland) 
and complex terrain (e.g., Alps, Sierra, New Zealand Alps). 

• Rotors occur when strong downslope flow in the boundary layer along the lee slopes separate from 
the surface as a turbulent vortex sheet creating strong turbulence and sub-rotors.

• Adjoint model results indicate that mountain wave turbulence is highly sensitive to stability and winds 
upstream of the mountain crest and in the UTLS upstream of breaking layers.

• The predictive skill of numerical forecasts of MWT observed in nature is encouraging and has 
improved with increases in fidelity of the models.

• Ultimately, high-resolution ensemble methods that are capable of explicitly resolving mountain waves 
should be used to provide probabilistic forecasts of turbulence needed for aviation hazard mitigation.

Summary
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