

# Collaborative Weather Research and Development for Urban Air Mobility



Dr. Hok K. Ng
Flight Trajectory Dynamics and Controls
Aviation Systems Division
NASA Ames Research Center
hokkwan.ng@nasa.gov



#### **Outline**

- Introduction
  - Wind optimal and weather avoidance operations
  - Climate impact and aircraft emissions tradeoff
- Background: Urban Air Mobility (UAM)
- Overview: Collaborative Weather Research and Development
- Impact Analysis for Dallas-Fort Worth Metroplex
  - Input Data
  - Preliminary Results
- Work in Progress
  - Weather Impact Data Analysis
  - Airspace Capacity Analysis

# Introduction: Wind Optimal and Weather Avoidance Operations



Wind-optimal trajectories worldwide for 26 June 2010



# Introduction: Climate Impact and Aircraft Emissions Tradeoff

Persistent contrails favorable regions worldwide for December 31, 2009





Energy-efficient trajectory design for reducing climate-impact on various timescales



Trajectory design for reducing climateimpact of trans-Atlantic flights



- 1. National Aeronautics and Space Administration (NASA) UAM Vision Concept of Operations (ConOps) UAM Maturity Level (UML) 4
- 2. Advanced Air Mobility (AAM) Ecosystem Community Integration Working Group: UAM Weather



# Overview: Collaborative Weather Research and Development

- Data support
  - NCAR project (FY19-20)
  - Initial analysis (FY20-22)



- Impact translation model
  - AvMet SBIR Phase III (FY20)

- Impact analysis
  - DLR collaboration (FY21-22+)





|                                  |                          |                  | Proposed UAM Weather Thresholds for Specific Weather Phenomena       |                                                           |                                           |
|----------------------------------|--------------------------|------------------|----------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|
|                                  | Wx phenomenon            | Units            | Green                                                                | Yellow                                                    | Red                                       |
|                                  | Convective<br>weather    | d82, NM          | 15-30 NM "belt" around a 40<br>dBZ area                              | 10-15 NM "belt" around a<br>40 dBZ area                   | Within 10 NM of a 40 dBZ<br>area          |
| specific? Vehicle class specific |                          |                  | Inside any 32+ dBZ area<br>unless it is already "yellow"<br>or "red" | 15-20 NM "belt" around a<br>45+ dBZ area                  | Within 15 NM of a 45+ dB/<br>area         |
|                                  | Freezing precip          | Cot              | No freezing precip                                                   | Freezing drizzle/fog?                                     | Freezing rain                             |
|                                  | Icing                    | Cot              | No ice                                                               | N/A                                                       | Any ice                                   |
|                                  | Snow                     | mm/hr            | Light (< 1 mm/hr)                                                    | Light-to-Mod (1-2.5 mm/hr)                                | > Moderate (> 2.5 mm/hr)                  |
|                                  | Horizontal Wind<br>speed | IX:              | Wind < 15 Kt ± 5                                                     | Wind < 20 Kt ± 10                                         | Wind > 25 Kt or gusts ><br>35 Kt          |
|                                  | Vertical Wind gust       | DEVG,<br>m/s     | < 4                                                                  | 4-6                                                       | >6                                        |
|                                  | Vertical Wind<br>StdDev  | M/s              | < 1.5                                                                | 1.5 - 2.3                                                 | > 2.3                                     |
|                                  | Wind Shear               | KI:              | < 10 Kt variation between<br>50-Ft lavers                            | 10-15 Kt variation between<br>50-Pt layers                | > 15 Kt variation between<br>50-Ft layers |
|                                  | Cloud ceilings           | Feet             | > 1000 Pt                                                            | 1000-500 R                                                | < 500 Ft                                  |
|                                  | Visibility               | Stotute<br>Miles | > 3 miles above e.g. 1200 Ft<br>> 1 mile below 1200 Ft               | 1-3 miles above e.g. 1200 Ft<br>0.5-1 miles below 1200 Ft | < 0.5 mile                                |
|                                  | Rain                     | Cot              | Less than heavy                                                      | Heavy                                                     | N/A                                       |
|                                  | Temperature              | Deg C            | -1°C to 30°C                                                         | 30-35°C or -101°C                                         | > 35°C or < -10°C                         |
|                                  | Relative humidity        | Percent          | ?                                                                    | 7                                                         | 3                                         |

# NASA

### **UAM Impact Analysis for Dallas-Fort Worth Metroplex**



<sup>1.</sup> Ng, H., "Strategic Planning with Unscented Optimal Guidance for Urban Air Mobility", 2020 AIAA Aviation Forum

<sup>2.</sup> Li, Jinhua, Ng, H., Zheng, Y., Gutierrez, S., "Noise Exposure Maps for Urban Air Mobility," 2021 AIAA Aviation Forum

<sup>3.</sup> Ng, H., Li, Jinhua, Zheng, Y., "Noise Impact Analysis for Urban Air Mobility in Dallas-Fort Worth Metroplex", 2022 AIAA Aviation Forum (to be published)



#### Inputs to UAM Impact Analysis





#### **UAM Weather and Noise Impacts-Preliminary Results**





### Work in Progress & Discussion





### Thank You!

Dr. Hok K. Ng
Flight Trajectory Dynamics and Controls
Aviation Systems Division
NASA Ames Research Center
hokkwan.ng@nasa.gov