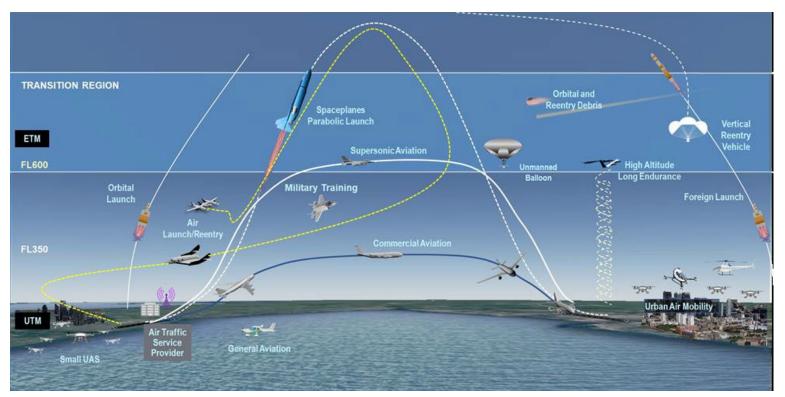


Drivers of Future Weather Research


Randy Bass 20 Apr 2022

Weather Research Branch

- Conducts research to mitigate the impact of weather on aviation and transitions successful research capabilities to operations
- 77.00
- Aviation Weather Research Program (AWRP) Performs applied research to enhance the science of weather and weather information/products
 - Leverages advances in meteorological science to enhance observation methods, improve weather prediction models, and produce increasingly accurate forecasts of convective weather, turbulence, icing, and low ceiling and visibility conditions
 - ➤ Enables traffic flow managers, controllers, pilots and airline operations personnel to implement tactical and strategic traffic management initiatives to avoid encounters with severe weather, reduce delays and mitigate safety risks
- Weather Technology in the Cockpit (WTIC) Develops, verifies, and validates recommendations for incorporation into Minimum Weather Service (MinWxSvc) standards and guidance documents
 - Performs research on all part-type aircraft to identify causal factors in weather-related safety hazards/risks and NAS operational inefficiencies; conducts applied research to resolve the identified causal factors and gaps, including gaps in pilot weather training materials and courseware
 - Enhances safety, reduces pilot workloads, and increases fuel efficiency to lower gas emissions for commercial, business, and general aviation operations

Diversity in Future NAS Operations

Courtesy of The MITRE Corporation

- UAS weather requirements and standards
 - Lack of observations in the boundary layer
 - ➤ Micro-weather and ultra-high resolution models
 - ➤ How can we expect UAS/UAM operators to meet flight standards if there's no way to verify the weather conditions?
 - Operator education similar to what WTIC is doing for pilots
- Commercial space terrestrial weather needs
 - What new weather requirements will come from Commercial Space as that industry takes off (pun intended)
 - ➤ There are already weather standards for launch (commit criteria), but what about landing or for recovery of rockets, etc.?
- Supersonic/hypersonic/trans-orbital passenger flight
 - ➤ Will these new modes of transportation, and the composite material and engines they use, produce new weather requirements?

- TBFM requirements for convective weather
 - ➤ 4 hour forecast accurate to within 3 NM and 15 minutes
 - o Previously beyond our capabilities, but now within reach?
 - o Satellite data exploitation for convective initiation
 - o Model-based research?
- Standardized turbulence intensity values
 - ➤ EDR is the "standard" but there are different ways it is computed; which way is right, or is there a right way?
 - Calibration of reported turbulence conditions so everyone is on the same page
- Certifications and technologies to meet certification
 - > TAIWIN and HIWC completion
 - ➤ UAS/UAM certification
 - ➤ What's next?

- Space weather needs for aviation
 - > New hire to develop our new space weather research program (Samantha Carlson)
 - > Radiation dosage measurements and standards for commercial aviation
 - Communication and GPS impact mitigation
 - Other aviation, UAS/UAM and commercial space needs
- Integration of new data sources into capabilities
 - ➤ Weather satellite imagery into icing, turbulence, convective weather, and C&V capabilities
 - Other channels besides visible and IR
 - Weather satellite data into hazardous weather diagnosis capabilities
 - Sounding/microwave data
 - One man's trash is another man's treasure
 - Radar data assimilated into capabilities
 - New radar data sets (TDWR, commercial, etc., into MRMS and/or NWP?)
 - o Severe weather algorithm upgrades, aviation icing algorithms, and other enhancements to NWP radar capabilities
 - > IIDAR

- Use of non-traditional weather data sources
 - Weather cameras
 - ➤ UAS/UAM data
 - > ADS-B derived data (beyond turbulence)
 - > Cell phones
 - Personal observing stations
 - Vehicles
 - > Can we exploit/leverage weather research being conducted for renewable energy, fire weather, etc.?
 - > Use of this data for aviation operations, but also assimilated into weather models
- Numerical weather models
 - Nested
 - ➤ High resolution
 - Super high resolution
 - Data decimation
 - At what point do we hit diminishing returns?

- Pilot education
 - Continued education of traditional pilots
 - Virtual reality and other new ways to train pilots
 - Education of UAS/UAM pilots
 - Even if these modes are machine-to-machine, the people writing computer code for their operations will need to know thresholds and standards

- PIREPS (ugh)
 - > Accurate and relevant
 - ➤ Is there really a way to fix the current system?
 - Complete overhaul and start from scratch?
 - Voice to text
 - > Totally automated, taking the pilot out of the equation?

Questions?

Randy Bass

ANG-C61

Randy.bass@faa.gov

202-341-3403