

Back to the Future

Aviation Weather Opportunities for the Research Community

Matthias Steiner

National Center for Atmospheric Research msteiner@ucar.edu

FPAW Seminar in Norman, OK Thursday, 27 October 2022

Attraction & Dangers of Flying

Ancient Greek Myth of Daedalus & Icarus

History of Aviation

Weather Proof – Think Again . . .

NSF T-28 Research Aircraft (retired)

Armor plated to fly into hailstorms

Weather affects Safety, Efficiency & Reliability

NRC Convair Research Aircraft

 Used to study aircraft icing conditions

Safety

- Weather can be a safety hazard
 - icing, turbulence, wind shear, etc.
 - volcanic ash, space weather

Weather is a significant factor constraining efficiency

5% 6% Weather 19% Volume 🖬 Equipment 🛯 Runway **OPSNET Delays by Cause (2008-2013)** Other 69%

Weather Impacts

- Depend on type of aircraft & phase of flight
- Impacts vary geographically & by season, airport, traffic density, & other factors

Beyond the Horizon

Evolving Aviation/Aerospace Industry

Resurging Demands

- Super/hypersonic flight
- Space launch & travel

RESEARCH APPLICATIONS LABORATORY

Novel Entrants

NCAR

- Uncrewed aerial systems
- Regional/urban air mobility

Lots of questions . . .

• ICAO, WMO, CAAs • ANSPs, ATC & ATM • Airports & airlines • GA, UAS, UAM • Supersonic • Defense • Space

What are the weather sensitivities of resurgent & novel entrants?	Wide variety of operations with different needs, handling of off-	Stakeholders
	nominal & emergency situations, et	с.
What weather guidance do they need to safely, efficiently & reliably operate?	Requirements for spatial & temporar resolution, refresh rate, look ahead times, weather parameters, etc.	I
Is that weather guidance available & who will provide it?	FAA is Met Authority, providers may NOAA/NWS or commercial sector?	' be
Do we understand operational environments enough to provide relevant weather guidance?	Dynamic boundary layer, complex terrain & urban environments, stratosphere & beyond?	
How does weather factor into safety standards?	Controllability of aircraft under wind & turbulent conditions, fuel/energy management, etc.	yk
What weather standards may need updating?	International standards to enable interoperability, standards for new o	data
Who will approve/certify novel weather information?	Sensors, data, algorithms, products	
To what extent is weather part of pilot/operator training?	Shouldn't fail weather questions in t & still get licensed/rated	test

High altitude

- Transition to high altitude
- Lesser known environment

Low altitude

• Non-traditional airports, if any

Low altitude
Traditional altitude
High altitude & beyond

-p-

ATC notifi

Operational Phases

Class B, C, D, E, G

Upper Class B

Class A

Flight Planz Authorizati Notification

-

LOW EARTH ORBIT

SPACE TRAFFIC SERVICES

CLASS E ABOVE A SERVICES

AIR TRAFFIC SEPARATION SERVICES

URBAN AIR TRAFFIC SERVICES

UNMANNED TRAFFIC SERVICES

How will airspace be managed?	Different approaches throughout depth, traditional ATC versus UTM or self-separation, performance & risk- based management, etc.
What weather guidance will be utilized?	Could vary between airspaces, & among NOAA/NWS, Supplemental Data Providers, commercial vendors
Challenges associated with transitioning from/to high-altitude operations or in/out of managed airspace for low-altitude operations	Includes delicate vehicles with limited maneuverability that may be highly sensitive to weather
How does weather factor into regulations & procedures for resurgent & novel entrants?	Regulations may push responsibility to operators but no sanctioned weather guidance available
How to better integrate weather within decision making process?	Translation of weather into operational impacts & support tools to guide operations Procedures

• Low altitude • Traditional altitude • High altitude & beyond

Weather translation & integration in decisions

- Communication
- Computing
- Automation
- Aircraft
- Sensors

Technology

Novel Aircraft

- Faster development cycles
- Electric, hydrogen, & hybrid propulsion

Computing & Automation

- Increasing data & connectivity
- From automation to autonomy
- Many tradeoffs to consider

- Communication
- Computing
- Automation
- Aircraft
- Sensors
- Technology

How does weather impact communication, navigation & surveillance?	Impacts of selling parts of frequency spectrum, interference concerns, coverage in urban areas
What aspects of weather & climate matter for aircraft design & certification?	Temperature sensitivity of new fuel/energy sources, wind & turbulence effects on delicate designs, needs to build upon solid understanding of operational environment, etc.
How should computing algorithms & ultimately autonomy get certified?	Modern aircraft increasingly rely on automation, autonomy builds on lots of data & algorithms
How does weather impact sensors used for flight safety, detect & avoid, etc.?	Data quality control is essential for algorithms to yield meaningful guidance
Should there be a weather sensing requirement for novel entrants?	Weather sensing is key for flight safety of large aircraft, would be beneficial for small aircraft as well, data sharing provides great benefits

NCAR | RESEARCH APPLICATIONS

New Capabilities

- Novel observations
- Improved process understanding
- Faster & smarter processing
- Uncertainty characterization

Climate Impacts

- Aviation impacts on Earth's climate system
- Climate change impacts on aviation

sudden intense and short-lived precipitation and wind events e.g. storm surges, hurricanes, hail storms, lightning as opposed to seasonal or annual changes

→ Aircraft operators 📥 Airport operators 🖙 ANSP 此 Externa

Weather & Climate

- Observations
- Process understanding
- Modeling & prediction

How will novel observations benefit scientific understanding & weather prediction?	Cubesat, MeteoDrones, small radars, mobile sensors, crowdsourced data, etc.
How to fill data voids at low & high levels, & in complex environments?	Limited observations above ground & especially in urban environments, very limited observations at high altitudes as well
How will new technologies benefit weather prediction?	GPU accelerated model runs, artificial intelligence & machine learning, probabilistic prediction, etc.
How will aviation reduce emissions to become greener?	Noise, contrails, soot & CO2, alternate fuels, etc.
How will climate change affect aviation operations & infrastructure?	Sea level rise, changes to jet stream, changes to storms, increased wildfires & dust storms, etc.
What steps are taken to mitigate impacts towards climate resilience?	Changes may require substantial lead times

Weather & Climate

- Observations
- Process understanding
- Modeling & prediction

Observing gaps at micro scales

Fine-scale weather guidance gap

Need for better fine-scale low-level weather guidance

Product	Туре	Space	Time	Aviation	Synop	Meso	Storm	Urban
RAP	A & F	13 km	15-60 min	•	•	•		8
HRRR	A & F	3 km	15-60 min	•	•	•	•	
RTMA-RU	А	2.5 km	15 min	•	•	•		
NWS Warnings	N & F	County/Polygon	Variable			•	•	
NCVA	А	5 km	5 min	•	•	•		
CIP & FIP	A & F	13 km	60 min	•	•	•		•
GTG-N & GTG	A & F	13 km	15-60 min	•	•	•	<u>.</u>	8
CIWS & CoSPA	A & N	1 km	1-5 min	•	•	•	•	
MRMS	A & N	1 km	1-5 min	•	•	•	•	
TAF	F	Airport	6 hour	•	•	•		8
AIRMET & SIGMET	N & F	Coarse	Variable		•			
LAMP	A & F	2.5 km	15-60 min	•	•	•		
GFA (Display Tool)	A & F	Variable	Variable	•	•	•	•	
HEMS (Display Tool)	А	Variable	Variable	•	•	•	•	

A = Analysis ; N = Nowcast ; F = Forecast

Sensor placement in cities

1

x/H

ż

ż

-1

1.5

0.

ò

0.0

Assimilation of UAS weather data for improved prediction

NCAR **RESEARCH APPLICATIONS** LABORATORY

• Process understanding

Modeling & prediction

Summary

Key Points

- Aviation/aerospace industry is evolving rapidly
- Novel & resurgent operations exhibit unique weather sensitive
- Improved weather guidance needed to support these *p*
- Scientific understanding of low & high altitude op necessary to develop actionable weather guid
- Environmental challenges must inform • operational procedures & regulation
- Opportunities for we prove of the start of t Evolving climate will likely app ٠ for operations & infrastru

Resilient Operation

- Need to for & sust
- eds to be an integral part of infrastructure Ations planning, & decision making
- Collaboration across disciplinary boundaries is essential for developing effective solutions
- Agile prototyping & testing beneficial to accommodate evolving industry needs

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of the sponsoring agencies.

RESEARCH APPLICATIONS LABORATORY