# Creation and Use of Probabilistic Forecasts in Aviation: the Ensemble Rapid Refresh Forecast System (RRFS)





How can we best use high-resolution ensemble information?

Friends and Partners of Aviation Weather Norman, OK 25-27 October 2022

# **Rapid Refresh Forecast System (RRFS)**

- Keep hourly updating using all observations
- Keep 3 km grid horizontal grid spacing
- Expanded domain compared to HRRR
- Increased vertical resolution
  (65 vertical levels vs. 50 for HRRR)
- Deterministic forecasts to 18h every hour
- Ensemble forecasts to 60h every 6 hours
  10 different forecasts → "range of outcomes"
- Ensemble spread  $\rightarrow$  forecast confidence
- Probability forecasts for specific weather hazards (convection, icing, low C&V, turbulence, winds)
- Identify potential extreme outlier events



Unification of existing NCEP systems

### Friends and Partners of Aviation Weather

# More detailed model more accurate overall, features do not have 1:1 match with observations



### HRRR 3 km

**Radar Observations** 





# Need to find optimal "translations" to map from very detailed forecast to most useful guidance

Friends and Partners of Aviation Weather

# What do we get from an ensemble weather prediction system?



Forecast inches of snow in 6h period

Sample 25 member ensemble spread of forecasts of 6-h snow (inches) at an airport

- 1. The "ensemble" provides a good estimate of the "range of possible weather outcomes"
- 2. If we just have a single "deterministic" forecast, we might be getting a less likely forecast
- 3. On average, the "most likely forecast" from the ensemble will be better than the single "deterministic" forecast
- 4. If a single forecast scenario is desired, it can be constructed from the ensemble

### Friends and Partners of Aviation Weather

## What makes a good ensemble and two key questions

- The ensemble should have a good 1. "spread-skill" relationship
- The observed event should be included 2. within the "range" of the ensemble



- 1. How can we most effectively present and use "spread" information?
- At what lead-time should we "act" 2 on ensemble outlier information?



Radar observations 18z 10 Aug. 2020



IA/IL derecho 10 Aug. 2020

### Friends and Partners of Aviation Weather

## Key points for hi-resolution, frequently updated ensemble model guidance for aviation

- 1. High resolution, frequent updating models provide best chance to accurately depict weather details with greatest lead-time (especially with more observations to "guide" the model)
- 2. Highest resolution model features will not be 1:1 with observations, need translation algorithm to best use hi-res information.
- 3. Ensembles can provide helpful information on range of outcomes, can use to generate probabilities and "most likely" specific scenarios
- 4. Model producers need to maximize skill AND spread-skill relationship to enable maximum confidence a maximum amount of the time
- 5. Knowledge of model ensemble characteristics as function of forecast lead time AND of application specific cost-loss aspects can guide optimal use of ensembles and especially outlier information.