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The status of weather forecasts

Adapted from Bauer et al. (2015)
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Numerical weather forecasts gained about a day of skill per
decade
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Adapted from Bauer et al. (2015)
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The status of weather forecasts

Adapted from Lang et al. (2024)
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Physics forecasts gained about a day of skill per decade
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The status of weather forecasts
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The status of weather forecasts

Adapted from Bauer et al. (2015) Adapted from Lang et al. (2024)
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Al forecasts emerged in 2022, outperforming the physics-based
methods
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A new age of weather forecasting

One of these are a pure machine learning model...
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One of these takes 1 hour to run on a super
computer the other 1 min on an ‘average’ GPU

Thanks to Jacob Radford and Robert DeMaria for running FourCastNet
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Supercomputer for 1 GPU
NOAA (runs GFS etc)
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A new age of weather forecastingc

Z500 ERA5S Q850 ERA5 T850 ERAS |

Z500 ML

There is a growing body of literature suggesting NWP-like skill from pure machine

learnin

g methods:

Weyn et
[Google]

al. (2020) [Microsoft]; Rasp et al. (2021); Ravuri et al. (2021) [Google]; Espeholt et al. (2022)
; Keisler (2022%; Figure above); Pathak et al. (2022*) [NVIDIA]; Bi et al. (2023) [Huawei Cloud

Computing]; Lam et al. (2023) [Google]; Nguyen et al. (2023*) [Microsoft]; Andrychowicz et al. (2023%)

[Google]

; Leinonen et al. (2023*) [MeteoSwiss]; Zhang et al. (2023) [Tsinghua University]; Chen et al.

(2023%)

[University of Science and Technology of China] .... more every few months

*unpublished
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Training the AI4ANWP models

= ~

ERA-5 at some time t, and t-6 ERA-5 t+6

Tend to use: "
Transformers, diffusion, or
graph neural networks
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Training the AI4ANWP models
Usually needs DA

Tend to use: "
Transformers, diffusion, or
graph neural networks
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GIRA What is Al and Machine Learning?

Connecting Models and Observations

Artificial Intelligence
Methods for computer systems
to perform human tasks

Machine Learning

Mathematical models with specified structure EXpert SyStemS

learn to perform tasks from data Operate autonomously
with human specified

rules. (e.g. fuzzy logic)

Statistics

Foundational Techniques
and Training Principles

Deep Learning
Neural networks with
multiple specialized layers
for encoding structural
information
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Some intuition

Original Image Kernel Convolved Image

Wanxa e8| wo x 16.3|[ w3 x 20.8

ws x 18.5|| ws x 26.5|| wg X 26.5

Radar hOOk eChO w7 X 25.1|| wg X 26.4|| wg X 30.6

The methods used to train the models all use calculus (i.e., derivatives)
to learn how to best extract information from the data
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CIRA Al-Weather page

7 P ¢ Re: alizations foe p
) | \/t‘“ Deve lhI)J !\11

If you are interested in IOOking at ::::; : \‘ . 10-19-2024 00Z + FO00 = 10-19-2024 00Z
the output of these experimental ; A Y =
models check out our CIRA page:

aiweather.cira.colostate.edu
Or ECMWF’s charts page:

https://www.ecmwf.int/en/forecasts/
charts
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http://aiweather.cira.colostate.edu/
https://www.ecmwf.int/en/forecasts/charts
https://www.ecmwf.int/en/forecasts/charts

Some of the global models

GraphCast

b Google DeepMind
Lam et al. (2023)

‘ Pangqu Weather LFS
N\ é HUAWEI CLOUD ~~ ECMWF
HUAWE Bi et al. (2023) Lang et al. (2023)
FourCastNet
< NVIDIA.

Pathak et al. (2022)
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Some Pros

Adapted from Bouallégue et al. (2024)
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perform similarly to D sl
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 Resolution:

Most are at 0.25 deg (i.e.,
think GFS), underdoes
extremes, blurs with time

* Limited variables:

Most models have about
13 levels and the common
state fields

*Precip has been mostly
unsuccessful so far

Colorado State University

Some Cons

Valid at: 2023-10-09 00:00
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What’s next?

Adapted from Price et al. (2024)
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a b Sample #1 ¢ Sample #2 ¢ Sample #3 @ mean
: ol E i : ”_, K Lo X - " /\. g
.ug% e X w
: « o OF . e G
0 O ' . °
: O 21 J
SRR \
P © B
f' ! ,, - ™ ™ T T T
specific humidity : . 104 103 10?
(700 hPa) h - . _k - : A
@2019-10-12 gg g ' : 1/'\ m
06:00:00 & §
@ v
33
9
10* 103 102
Wavelength (km)

Ensembles: Going beyond the deterministic results in GraphCast, Price

et al. (2024) show that ML (named GenCast) can outperform the ECMWEF
ENS
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What’s next?

Adapted from Mahesh et al. (2024)

Huge Ensemble Gain 50-member Ensemble Gain

i )

Ensembles: Given the relatively low computational cost, ensembles with
members in the 1000s is now possible. Mahesh et al. (2024) show that an
ensemble of about 7000 members can reliably capture more extreme
events than the current operational ensembles
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Data assimilation: A lot
of the forecast models
discussed still need an
Initial state. But ML
based DA is being
worked on

Colorado State University

What’s next?

Adapted from Manshausen et al. (2024)
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from Flora et al. in prep

WoFSCast Comp. Refl. WoFSCastDiff Comp. Refl.
=7 ] . |RMSE of Comp. Refl. (dB2): 0.0000 =
RMSE with MRMS: 27.0644 o RMSE/with MRMS: 27.0644 o

Storm scale: Most success so
far has been on the synoptic
scale. There are efforts to
extend the methods down to
the storm scale

50 60 70
Comp. Refl. (dBZ)

WoFSCast: https://essopenarchive.org/users/829074/articles/1223249-wofscast-a-machine-
learning-model-for-predicting-thunderstorms-at-watch-to-warning-scales
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Imagining the future

Since these forecasts can run so
quickly on modest machines,
Imagine a future where forecasts
can be launched on a plane by
plane basis (or even on the plane)
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Where can | learn about ML?

Looking to learn about machine learning”? We have written 2 plain
language tutorial style papers

AUGUST 2022 CHASE ET AL. 1509

“A Machine Learning Tutorial for Operational Meteorology. Part I: Traditional
Machine Learning

AuGuUST 2023 CHASE ET AL. 1271

9A Machine Learning Tutorial for Operational Meteorology. Part II: Neural Networks
and Deep Learning

Both Published In
WAF, and are open-
access

Ay ary David Amanda
McGovern Lackmann  Harrison Burke
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