## **Towards Kilometer-Scale Convection Allowing Model Emulation using Generative** Diffusion Modeling Jaideep Pathak, Senior Research Scientist | FPAW Fall Meeting / October 31 2024



## AI Could Side-Step Moore's Law With Implications for Weather Forecasts



Can Breakthroughs in AI for Atmospheric Simulation Unlock Bigger Ensembles & Higher Resolution?



## 2023 was a milestone year for AI weather prediction Global 25-km AI weather forecasting has exited its infancy

- Several AI/ML weather models are now as accurate or better than state-of-the-art numerical weather prediction at global 25km resolution.
- Al weather models offer massive speedups of over 10,000x and huge ensemble sizes

# new ML model

13 October 2023 The AIFS team

#### View all AIFS blog posts

ECMWF is today launching a newborn companion to the IFS (Integrated Forecasting System), the AIFS, our Artificial Intelligence/Integrated Forecasting System (one "I" covering both Intelligence and Integrated).





## **Diverse AI Architectures With Skill Exceeding Physics Models** Scores for 2020 evaluated against ECMWF IFS analysis or ERA5 reanalysis

|                                   |                   | Pressure                                                                 |      |      |            | Temperature                 |                  |      |      | Humidity                             |      |      |                  |                               | Wind Vector |      |      |                  |      |      |      |  |
|-----------------------------------|-------------------|--------------------------------------------------------------------------|------|------|------------|-----------------------------|------------------|------|------|--------------------------------------|------|------|------------------|-------------------------------|-------------|------|------|------------------|------|------|------|--|
| 500hPa geopotential RMSE [kg²/m²] |                   |                                                                          |      |      |            | 850hPa temperature RMSE [K] |                  |      |      | 700hPa specific humidity RMSE [g/kg] |      |      |                  | 850hPa wind vector RMSE [m/s] |             |      |      |                  |      |      |      |  |
| ML / hybrid models sical models   | IFS HRES          |                                                                          | 135  | 304  | 521        | 801                         | 0.62             | 1.16 | 1.82 | 2.63                                 | 3.63 | 0.55 | 0.96             | 1.27                          | 1.53        | 1.81 | 1.69 | 3.29             | 5.20 | 7.11 | 9.14 |  |
|                                   | IFS ENS Mean      | 42                                                                       | 132  | 277  | 439        | 621                         | 0.65             | 1.11 | 1.62 | 2.17                                 | 2.80 | 0.51 | 0.84             | 1.06                          | 1.22        | 1.38 | 1.63 | 2.98             | 4.44 | 5.74 | 6.94 |  |
|                                   | Pangu-Weather     | 44                                                                       | 133  | 294  | 501        | 778                         | 0.62             | 1.05 | 1.71 | 2.51                                 | 3.54 | 0.53 | 0.88             | 1.19                          | 1.47        | 1.79 | 1.66 | 3.00             | 4.82 | 6.71 | 8.79 |  |
|                                   | GraphCast         | 39                                                                       | 124  | 274  | 468        | 731                         | 0.51             | 0.94 | 1.56 | 2.33                                 | 3.36 | 0.47 | 0.79             | 1.06                          | 1.30        | 1.59 | 1.42 | 2.76             | 4.44 | 6.22 | 8.17 |  |
|                                   | FuXi              | 40                                                                       | 125  | 276  | 433        | 631                         | 0.54             | 0.97 | 1.59 | 2.14                                 | 2.91 |      |                  |                               |             |      | 1.47 | 2.80             | 4.49 | 5.64 | 7.02 |  |
|                                   | SphericalCNN      | 54                                                                       | 161  | 338  | 546        | 815                         | 0.73             | 1.18 | 1.86 | 2.64                                 | 3.62 | 0.59 | 0.89             | 1.17                          | 1.43        | 1.72 | 2.05 | 3.38             | 5.17 | 7.01 | 8.98 |  |
|                                   | NeuralGCM 0.7°    | 37                                                                       | 115  | 267  | 469        | 751                         | 0.54             | 0.97 | 1.58 | 2.38                                 | 3.42 | 0.48 | 0.83             | 1.12                          | 1.40        | 1.71 | 1.49 | 2.81             | 4.57 | 6.49 | 8.64 |  |
| N                                 | euralGCM ENS Mean | 43                                                                       | 126  | 266  | 424        | 606                         | 0.65             | 1.02 | 1.53 | 2.10                                 | 2.75 | 0.54 | 0.81             | 1.02                          | 1.19        | 1.37 | 1.76 | 2.88             | 4.28 | 5.59 | 6.83 |  |
|                                   | Climatology       | 820                                                                      | 820  | 820  | 820        | 820                         | 3.44             | 3.44 | 3.44 | 3.44                                 | 3.44 | 1.59 | 1.59             | 1.59                          | 1.59        | 1.59 | 7.89 | 7.89             | 7.89 | 7.89 | 7.89 |  |
|                                   |                   | 1                                                                        | 3    | 5    | 7          | 10                          | 1                | 3    | 5    | 7                                    | 10   | 1    | 3                | 5                             | 7           | 10   | 1    | 3                | 5    | 7    | 10   |  |
|                                   |                   | -                                                                        | Lead | time | ,<br>[days | ]                           | Lead time [days] |      |      |                                      |      |      | Lead time [days] |                               |             |      |      | Lead time [days] |      |      |      |  |
|                                   |                   |                                                                          |      |      |            | -50 -                       | -20 -            | -10  | -5   | -2                                   | -1   | 1    | 2                | 5                             | 10          | ) 20 | ) 50 | )                |      |      |      |  |
|                                   |                   | Better $\leftarrow$ % difference in RMSE vs IFS HRES $\rightarrow$ Worse |      |      |            |                             |                  |      |      |                                      |      |      |                  |                               |             |      |      |                  |      |      |      |  |

### sites.research.google/weatherbench



## HENS: Huge ensemble sizes are possible at synoptic scale with AI Case Study with the NVIDIA FourCastNet-v2 model

- On August 23, 2023, Kansas City had an extreme heatwave, with 35°C air temperature, 56% relative humidity, and a heat index of 43°C.
- The 10-day IFS ensemble forecasts predicted warmer than average temperatures, but no members captured the combined magnitude of surface heat and humidity.
- HENS samples the tails of the forecast distribution and is able to capture the magnitude of the event.

#### Mahesh et al., Huge Ensembles Part I: Design of Ensemble Weather Forecasts using **Spherical Fourier Neural Operators**





### **Km-scale Weather Forecasting with ML** Atmospheric physics spans a large range of spatial and temporal scales

- Global weather models:
  - 10-30km resolution.
  - Negligible vertical acceleration of air, hydrostatic balance assumed.
  - Parametrized precipitation forecasts.
  - Global domain.
- Regional weather models
  - 1-5km resolution.
  - Hydrostatic balance is not assumed resulting in buoyancy and convection.
  - Explicitly modeled convective dynamics.
  - Capable of simulating thunderstorms.
  - Regional domain due to computational expense.



Markowski & Richardson



### Diffusion models allow you to learn a distribution p(x) given samples from the distribution $\{x_1, x_2, \dots, x_N\}$ .

- In weather forecasting, we can train a diffusion model to learn the conditional distribution  $p(x_t|x_{t_0})$  where  $t_0$  is some initial time and t is some later time. C.f. GenCast (Price et al. 2023).
- Avoids learning deterministic mean behavior. No blurring.



## **Generative Diffusion Models** Learn a distribution p(x)

**Conditional Diffusion** Model

 $p(x_t|x_{t_0})$ 

 $x_t^n$ 



### Sample 1



### Sample 2

#### Sample n



## StormCast – Km-Scale Generative Convection Allowing Model Beyond downscaling: NVIDIA's first high-resolution AI km-scale weather prediction prototype





Synoptic Scale State



## StormCast – Km Scale Generative Convection Allowing Model A Multi-Scale Inference Setup



Initial State (HRRR Analysis)

km

HRRR...



Dynamics learnt from timestepping kmscale state.



## **Domain Extent: Experimental Central US Proving Ground** 1536 x1920 km (512 x 640 pixels)





## StormCast – Km Scale Generative Convection Allowing Model

|                     | Parameter                                | Pressure levels (hPa)                                 | Height levels (m)                                                                                                                                                    |  |  |
|---------------------|------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                     | Zonal Wind (u)                           | 1000, 850, 500, 250                                   | 10                                                                                                                                                                   |  |  |
|                     | Meridional Wind (v)                      | 1000, 850, 500, 250                                   | 10                                                                                                                                                                   |  |  |
|                     | Geopotential Height (z)                  | 1000, 850, 500, 250                                   | None                                                                                                                                                                 |  |  |
|                     | Temperature (t)                          | 1000, 850, 500, 250                                   | 2                                                                                                                                                                    |  |  |
|                     | Humidity (q)                             | 1000, 850, 500, 250                                   | None                                                                                                                                                                 |  |  |
|                     | Total Column of Water Vapour (tcwv)      | Integrated                                            | -                                                                                                                                                                    |  |  |
|                     | Mean Sea Level Pressure (mslp)           | surface                                               | -                                                                                                                                                                    |  |  |
|                     | Surface Pressure (sp)                    | surface                                               | -                                                                                                                                                                    |  |  |
|                     | HRRR                                     |                                                       | •                                                                                                                                                                    |  |  |
|                     | Parameter                                | Hybrid model levels (index)                           | Height levels (m)                                                                                                                                                    |  |  |
|                     | Zonal Wind (u)                           | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 25, 30 | 10                                                                                                                                                                   |  |  |
|                     | Meridional Wind (v)                      | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 25, 30 | 10                                                                                                                                                                   |  |  |
| (m-scale state :    | Geopotential Height (z)                  | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 25, 30 | None                                                                                                                                                                 |  |  |
|                     | Temperature (t)                          | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 25, 30 | None<br>2<br>None<br>-<br>-<br>-<br>Height levels (m)<br>10<br>10<br>10<br>10<br>10<br>None<br>2<br>None<br>2<br>None<br>1ntegrated<br>Surface<br>Surface<br>Surface |  |  |
| 6 dynamical         | Humidity (q)                             | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 25, 30 | None                                                                                                                                                                 |  |  |
| variables across ~  | Pressure (p)                             | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20         | None                                                                                                                                                                 |  |  |
| 6 HRRR vertical     | Max. Composite Radar Reflectivity (refc) | -                                                     | Integrated                                                                                                                                                           |  |  |
| $avole \pm ccolore$ | Mean Sea Level Pressure (mslp)           | -                                                     | Surface                                                                                                                                                              |  |  |
| EVEIS 7 SCAIAIS.    | Orography                                | -                                                     | Surface                                                                                                                                                              |  |  |
|                     | Land/Water Mask                          | -                                                     | Surface                                                                                                                                                              |  |  |

| Hybrid Level<br>Indices | 1   | 2   | 3   | 4   |     | 6   | 7   | 8   | 9    | 10   | 11   | 13   | 15   |   |
|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|---|
| Altitude (m)            | 125 | 150 | 200 | 280 | 400 | 560 | 750 | 970 | 1210 | 1500 | 1800 | 2500 | 3500 | e |

State vector definition





### **Lead time:** 1 hour

### 3 hours

6 hours

9 hours

12 hours

f03

f01

f06

f12

HRRR forecast











#### MRMS verification













StormCast PMM











#### StormCast Single Mem.













## **Results: Forecast Skill Comparison** Competitive skill with HRRR using 5-member ensemble PMM







## **Convective scale motions**

target













- **Design:** Multi-scale & Stochastic Architecture
  - Deterministic backbone with diffusion correction.
- from AI mesoscale models?
- Preprint: <u>https://arxiv.org/abs/2408.10958</u>

### StormCast: An encouraging new ML model for km-scale prediction.

• **Results**: 5-member radar forecasts with PMM surpassing HRRR deterministic skill across 1-5h lead times. • State: 96 prognostic km-scale vars – incl. hor. winds, temperature, pressure & humidity across 16 HRRR model levels.

Forecasts conditioned by GFS during rollout & initialized by HRRR analysis.

**Possibilities:** How much can we improve forecast accuracy and uncertainty with 100s to 1000s of ensemble members

