

Establishing, Growing Use of, Trusting, and Increasing Value from AI/ML-based Weather Decision Support Services and Solutions

John Celenza, Weather Team Lead

31 October 2024 👻

Zipline: 2 Platforms • P1 - Fixed wing aircraft, 3 meter wingspan • P2 - a 5 prop e-vtol "docking" drone with a droid

Platform 1

CI-1 Zipline Daloa at Nightfall.

Zipline launched with Walmart in 2021

Pea Ridge, Arkansas AR-1 (Colocated DC) Launched July 2021

Zipline proprietary and confidential. © 2024 Zipline Inc. All rights reserved.

The Male

Where We Fly

Zips fly the circumference of Earth at least every 8 hours

NASA's Artemis flew 2M km in 25 days **Zipline flew 2.8M km** in the same 25 days

Artemis burned 755,000 gallons of fuel; Zipline burned **none**

Zipline's commercial drone deliveries over time

1,000,000		
800,000		
600,000		
400,000		
200,000		
0		
J	2017 April 18, 3	2024

Platform 2

Docking stations come in different shapes and sizes

Integrated

Station(s)

- Expandable high-volume versions available (if needed)
- ~2+ orders per minute

Instamount

Station

- Orders loaded outside in a parking lot
- Faster to get started
- ~1 order per minute

•

٠

Delivery that's thoughtfully unnoticeable

Instant Delivery

Zip quietly hovers above...

...while the delivery droid gently places deliveries in a matter of seconds

P1 Africa: It's stormy!

Western Africa Severe Weather

2023-01-26 Ghana

Typical Snapshot

Avoiding Severe Wind: Let's build a Model

What Zips Measure

Observational Frequency - 50 Hz **Average Flight Duration** - <1 Hour Globally **Variables**

- Wind Component (NED) ~ ±1.5 m/s
- Temperature $\sim \pm 2.5 \degree C$
- Relative Humidity
- Static Pressure High accuracy, used for pressure altitude

Let's train a model!

Trusting AI: How do we use this model responsibly?

Trusting Al It's all about safety

- What are the lines of defense to ensure safety?
- How do we quantify risk and business impact?

Trusting Al It's all about safety

Zip Safety Through Engineering

- **Bully** the weather be nimble and thrustful
- Avoid the weather through forecasting and nowcasting
- Safely end flight parachute deployment

Being the meteorologist, I am going to talk about avoiding the weather.

Trusting Al It's all about safety - Probability of Parachute vs Delay

The Forecasting Trade:

When we have a predictor, we need to determine a threshold that separates the good from the bad;

the nominal flights from the parachute deploying flights.

We trade safety for delay when choosing a threshold.

Trusting Al It's all about safety - Probability of Parachute vs Delay

To compute **probability of parachute deployment** over a set of forecasting thresholds, we find the following probabilities.

The algorithm:

For each "forecasting threshold" - eg, 0 to 30 m/s For every flight sample - these samples can be from real flights, or a proxy *ith* P(parachute deployment) = P(parachute deployment | wind speed in flight) * (1 - P(forecast model predicted above forecasting threshold | flight sample time/location))

P(parachute deployment | forecasting threshold) = mean(list of *ith* P(parachute deployment))

Trusting Al It's all about safety - Probability of Parachute vs Delay

Examples:

- if we threshold our wind model to **0 m/s** (no go if the wind exceeds 0 m/s), then we have 100% safety, but 100% delay (non operation)
- if we threshold to 100 m/s, then we have the safety of non-mitigation, but 0% delay

The right answer could be the 2nd bullet if we've bullied the weather. Most of the time, the right answer is somewhere in between.

Trusting AI From ML to Operations

- Operations Team -
 - Maximum Uptime
 - Minimize Delay to customer
 - Operate Safely
- Weather Team -
 - Maximize Safety
 - Minimize Frustration for Operator
 - Maximize Confidence with Regulator

Trusting Al It's all about safety - The Tried and True Way?

But do we totally trust the AI? No.

Zipline puts humans and nowcasting in the loop

- **Zips measure the wind** true observation limits risk to other aircraft
- **Pilots in Command** observers on the ground can make informed decisions
- Meteorologist Expertise we staff meteorologists to observe the entire fleet

2024-10-28 Ghana 5

2024-04-16 Ghana

Comparing Satellite to HRRR NWP Performance

P1 AR-1 vs HRRR

P1 Africa vs METEOSAT

With Terrain: HRRR Doesn't Cut It

- HRRR can't "see" San Bruno Mountain's Curved flow
- It's a pretty big feature
- I live this curved flow on my bike daily!

Downscaling Experiments - HRRR 3 km to 330 m

Downscaling Model

3 km wind from HRRR

330 m DEM

Inferring 330 m wind field

330 m **reconstructed** wind

Inference for CNN

2023-04-02T06:00:00.00000000

Validation with madis at different thresholds

Correlation

Validation with madis at different thresholds

RMSE

rmse between observation and prediction

Validating for wind above certain threshold

Thank you!

Questions?

Contact: john.celenza@flyzipline.com

