Airspace Capacity Estimation: Flow Constraint Index (FCI)

Ken Fenton

Forecast Impact and Quality Assessment Services Branch

NOAA/OAR/Global Systems Laboratory (GSL)

CIRA Award Number NA14OAR4320125, CIRES Award Number NA17OAR4320101

Problem Statement

- How to objectively determine locations where air traffic will be constrained?
- How to optimize traffic flow given weather scenarios?
- Need to recognize that no forecast is perfect, so look at ensembles, probabilities, and multiple model solutions

Flow Constraint Index (FCI)

Flow Constraint Index (FCI)

• Hexagonal Grid with 80 x 40 nmi corridors

- Approximates width of jet routes
- Captures sensitivity to orientation of hazard
- Allows FCI aggregation over any desired region (e.g., ARTCCs, potential TCF polygons)

Flow Constraint Index (FCI)

5

FCI – Combining Weather with Traffic

Constraint over ARTCCs

- Constraint over ARTCCs
- Constraint over userdrawn polygon

- Constraint over ARTCCs
- Constraint over userdrawn polygon
- Constraint for a host of forecast products
 - Hi-resolution deterministic
 - Probabilistic
 - Synthesis

Integrates Historic and Current Traffic

Integrates Historic and Current Traffic

Historic Traffic

Ideas for Future Airspace Capacity Estimation

- Playbook selection by rank ordering impacts from weather
- Model optimal free flight around hazards
 - Flow Constraint Mitigation
- Calculate capacity and constraint in the terminal area on approach

Playbook Recommendation

Area of thunderstorms in Virginia and the Carolinas, blocking north-south traffic along the eastern seaboard.

Playbook Recommendation

Playbook Recommendation

Modeling Optimal Free Flight

- Construct a Graph
 - Each vertex of an object is a Node
 - Edges are defined between all Nodes if the connection does not passing through any object
 - Source and Sink represent the departure and arrival airport
- Use a Shortest Path algorithm to solve
- Differences in Graph as compared to FCI
 - Each object is a Node
 - Edges are shortest path between objects
 - Source and Sink of the corridor sides

Modeling Optimal Free Flight

Accounts for storm motion by matching the timing of aircraft position with observation or model forecast times

Modeling Optimal Free Flight

Optimizes the trade-off between additional flight distance and probability of encountering a hazard

Terminal Area Capacity and Constraint

FCI works better en route, it doesn't make as much sense near the terminal.

Divide this space into narrow corridors for STARs/SIDs and weighted sum of traffic on approach into airports.

Terminal Area Capacity and Constraint

Forecast verification – does the forecast give you good information about near terminal operations

Alternative Approach based on Convective Weather Forecast

(4/29/2021)

Le Jiang (IMSG)

Alternative Approach

- Directly apply Min-cut theory using high res. numerical forecast/ nowcast
- Square Box built over forecast/nowcast grids to estimate flow capacity deduction rates in 8 directions
- Square Box is scalable based on forecast resolution and FCA
- One or multiple convection fields can be applied by setting appropriate thresholds (e.g. radar reflectivity, echo top, convection precipitation, icing, turbulence, etc.)
- The thresholds can be easily tuned (based on validation)
- Flow capacity reduction rate for Route Segments, Waypoints, and Sectors
- ✓ Step 1: translate weather forecast to capacity reduction rate forecast
- Step 2: estimate capacity rate reduction in Route Segments, then Way-points and Sectors (using aggregation)
- With or without (historical or current) flight data: In case of no flight data, capacity reduction rate is purely due to weather impact (same weighting in all directions)
- Performance depends on weather model performance
- Sensitive to convection weather field thresholds
- Easy validation if flight data are available

Example: Mesoscale Model – NMMB reflectivity 3 hour forecast over East China (left) is translated to 3 hour capacity reduction rate forecast in East-West direction with composite reflectivity threshold > 35 DBZ (right)

- Capacity reduction rate forecast in other directions can be done as well.
- Base on the projections over all directions, capacity reduction rates in various route segments, waypoints, and sectors can be estimated

✓ Validation was done in comparison to GSL's FCI-based approach, close match