

Runway Friction Closure Prediction System (RFCPS)

Project Overview

Seth Linden

National Center for Atmospheric Research Boulder, Colorado

Josh Paurus

Minneapolis–Saint Paul International Airport / MAC Minneapolis, Minnesota

FPAW

October 13, 2020

Outline

- Background
- About RFCPS
- System Overview
- Phase I Machine Learning
- Phase II Machine Learning
- Initial verification
- Output examples during storm
- Web-display
- Future Plans

Runway Friction Forecast and Closure Guidance

RUNWAY CLOSURE GUIDANCE MATRIX GENERATED ON 20200209 04:45

	0445	0500	0515	0530	0545	0600	0615	0630	0645	0700	0715	0730	0745	0800	0815	0830	0845	0900	0915	0930	0945	1000	1015	1030	104
EC 12L/30R NW 1/3	0.26	0.28	0.23	0.23	9.22	0.22	0,23	0.2	0.21	0.23	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.25	0.25	0.25	0.25	0.4
EC 12L/30R Center point	0.25	0.27	0.22	0.23	0.22	8.22	0.22	0.2	0.2	0.2	0.21	0.21	0.34	0.35	0.22	0.22	0.22	0.24	0.25	0.24	0.25	0.26	0.25	0.26	0.4
EC 12L/30R SE 1/3	0.27	0.29	0.23	0.23	0.22	0.22	0.22	0.2	0.2	0.2	0.21	0.21	0.34	0.34	0.22	0.22	0.22	0.23	0.25	0.24	0.25	0.26	0.25	0.26	0.
EC 12R/30L NW 1/3	0.28	0.29	0.24	0.23	0.23	0.22	0.21	0.2	0.2	0.2	0.2	0.23	0.35	0.35	0.22	0.22	0.22	0.23	0.25	0.25	0.25	0.25	0.25	0.25	0.
EC 12R/30L Center point	0.28	0.29	0.24	0.23	0.23	0.22	0.21	0.2	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.26	0.25	0.25	0.25	0
EC 12R/30L SE 1/3	0.31	0.32	0.26	0.25	0.23	0.22	0.21	0.2	0.23	0.21	0.21	0:22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.26	0.25	0.25	0.25	0.
7/35 N 1/3	0.36	0.35	0.21	0.22	0.22	0.21	0.21	0.2	0.2	0.2	0.2	0.21	0.34	0.34	0.22	0.22	0.22	0.22	8.22	0.24	0.25	0.25	0.25	0.25	0
7/35 Center point	0.35	0.35	0.21	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.24	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0
//35 5 1/3	0.36	0.35	0.21	9.22	0.21	0.21	0.21	0.23	0.21	0.23	0.21	0.22	0.35	0.35	9.22	0.24	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0
22 SW 1/3	0.35	0.35	0.21	0.22	0.22	0.22	0.21	0.2	0.2	0.21	0.21	0.21	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.26	0.26	0.25	0.26	0
22 Center point	0.35	0.35	0.21	9.22	9.32	0.22	0.21	0.23	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.25	0.26	0.25	0.26	0
22 NE 1/3	0.36	0.35	0.21	0.22	0.22	0.22	0.21	0.2	0.2	0.2	0.2	0.2	0.33	0.33	0.2	0.2	0.2	0.21	0.21	0.21	0.21	0.21	0.23	0.23	0

FORECAST LEAD TIME

No runway closure Runway closure possible Runway closure likely Runway closure most likely

NCAR Runway Friction Closure Prediction air • planet • people

Background

- The airport community has relied on standard methods to relate weather data to the runway friction problem
- Minneapolis–Saint Paul International Airport experiences several winter storms each season where the runways must be closed due to a loss of friction
- MSP contacted the National Center for Atmospheric Research for help in automating the procedure for relating friction data to runway closure times
- The project would not be possible without support from MAC and folks at MSP: Joshua Paurus, John Ostrom, Kyle Scapple, Renee Morafka

Runway Friction Closure Prediction System

- The RFCPS combines machine learning models with a backend weather forecast to predict runway friction values and runway closure alerts
- The current system updates every hour using the latest available observation data, friction data and near-term forecast data.
 - Updates sub-hourly upon receiving real-time friction data
- RFCPS predicts frictions values from 0 to 6 hours into the future at 15-minute leadtimes
 - Predicts friction Mu values between 0-1
- The friction values are combined with rules of practice to predict runway closure alerts

Producing Forecasts at 1/3 Runway Segments

NCAR Runway Friction Closure Prediction *air* • planet • *people*

The Real-Time System

- 1. Backend forecast engine produces weather and road condition forecasts every hour for each runway segment
- 2. The friction prediction application reads in the forecast data and calls the different machine learning models
- 3. A separate application looks for real-time friction measurements from MSP and saves data in a file
- 4. Real-time application reads in latest weather forecast, latest friction forecasts, latest friction observations and produces the final output products
 - Applies Forward Error Correction (FEC) if applicable
 - Does time-conversions and formatting
 - Produces multi-panel plots, csv files and runway closure matrix
 - Very latest closure matrix and forecast plots available via webdisplay application (url based) for easy viewing

7

RFCPS System Diagram

NCAR Runway Friction Closure Prediction *air* • planet • *people*

Backend Road Weather Forecast System: MDSS

Forecasts go out to 72 hour at 1-hour lead-times

NCAR

Phase I Machine Learning

- Created several different machine-learning models using historical friction data and RWIS observations
 - Cubist (Regression)
 - Gradient Boosted Trees (GBT)
 - Random Forrest
 - Expert System (Rules) based algorithm
- Models predict surface friction Mu values between 0-1
 - 0.2 would be very slick, 0.8 very tacky
- After analyzing initial results, modified the target data to get better results

Data used for Phase I Machine Learning

- All historical data is from Nov, 2014 March, 2017
 - 3 winter seasons
- Friction Data from MSP
 - Measured by an Airport Surface Friction Tester
 - At inconsistent times when a storm was passing
- RWIS data
 - 5 minute surface and atmospheric data from multiple units at MSP
 - Surface Temp, Surface State, Air Temp, Dewpt, RH, Rain State, Wind Speed, Wind Dir, Chemical Factor / Concentration
- ASOS data
 - 1 minute data from the station at MSP
 - Visibility, Wind Direction, Wind Speed, Precip(mm), Present Weather (string), Temperature, RH, Dewpt

Preparing Data for Machine Learning

• QC

- Removed stuck values
- Removed outlying Surface Temperature fields
 - If one station's Surface Temp differed greatly from the other stations at any given time, remove it.
- Combining the datasets
 - For any given friction measurement, take the most recent observation values from the RWIS or ASOS measurements.
 - For common fields use RWIS first, fall back to ASOS if RWIS is missing
- Adding combined/derived fields
 - Average value over last X minutes
 - Most severe value over last X minutes
 - Consolidated precip condition fields to match RCTM output

Initial Results

Change Target

- Without historical and real-time treatment information cannot model the spikes
- Re-think problem
 - It would be meaningful if we could forecast the 'low' values in between the spikes. This would inform MSP when the friction values are likely to fall below some critical threshold.
- Solution: Change Target
 - Rather than training the models to target average friction, train them to target the worst friction value over last hour
- This produced much better results in Phase I
 - Still not capturing up and down in friction values due to runway treatments (that comes in Phase II)

Phase I: Target Lowest Friction Value

UCAR

15

Initial Verification (after new target in ML)

Friction Forecast for site MSP Runway 12R/30L NW 1/3 generated on 20180224 15

Initial Forward Error Correction

Gather friction measurements in real-time from MSP airport (these are the Friction Obs)

Use the friction observations to correct the friction forecast in the first 3-hours

The updated friction forecast is then used to produce the runway closure alerts

NCAR Runway Friction Closure Prediction *air* • planet • *people* 1

Phase II Goals

- 1. Improve friction prediction models by incorporating actual treatment information
 - Understand the MSP treatment data and how it relates to the friction values
 - Utilize new data to build new ML models

2. Better Forward Error Correction

- Modify system to produce sub-hourly updates upon receiving real-time friction observations
 - Corrects latest forecast, updated to nearest 15minute start time and produces a new 6-hour forecast

3. Update output and add forecast variables

- Runway Crosswind Potential
- Runway Blowing Snow Potential

4. Create web-display application (URL based) for easy viewing of the output products

Preparing Data for Phase II Machine Learning

- Used more recent historical data
 - Winters of 2017/2018, 2018/2019 and early winter 2019
 - Same QC techniques to line up friction observations with RWIS
 / ASOS observations
- The updated historical data from MSP had indication of runway treatments
 - Spreadsheet indicates pre-run friction values and posttreatment friction values at certain times of the day
 - Also shows if treatment / plowing was done to the runway section
 - New QC was implemented to line up pre / post run friction values with actual treatments (yes = 1, no = 0)
 - QC'd out data where friction values went down after treatment (due to heavy snow)
 - Normally friction value increase (improve) after treatment

Phase II: Initial Machine Learning

- Worked on creating new machine-learning models that use actual treatment data
 - Initially developing models with treatment yes=1, no=0
- Then developed first model that takes into account all friction value and all treatment yes, no's
- A second model was developed using yes-treatment data only
 - Assume continuous treatment
- A third model was developed, for no-treatment data
 - Assumes no treatment at all
- Examined how these different models compare and how they can be used together

Phase II: Initial machine-learning models that use treatment data

NCAR Runway Friction Closure Prediction air • planet • people

21

Phase II Machine Learning Results

- New ML models developed
 - New Gradient Boosted Trees (GBT) model
 - New Neural Net Models
 - New optimized GBT model
 - New Cubist model
- NCAR did assessment of new friction models to determine what model is performing the best
 - Looked at both bulk statistics: Hit/Miss, MAE, RMSE
 - Also looked at several case-study plots
- Determined a model combination between the two best models gives the best overall results
 - Initial model combination is 80% GBT / 20% Cubist
 - Used this combination for all-three output models: Main Friction forecast (yes and no treatments), Friction forecast without treatment (based on no treatment), Friction forecast with treatment (based on yes treatment)
- New output: Use all three models for best guidance
 - Friction-forecast (main model output: takes into account treatments and notreatments, gives expected values, closure guidance based on this model)
 - Friction-forecast-without-tmt (model assumes no treatment being applied to runways, gives lower bounds of friction values)
 - Friction-forecast-with-tmt (model assumes treatment is applied at every leadtime, gives upper bounds of friction values)

Verification

- NCAR created verification scripts for the RFCPS
 - Takes a date.hour range and can evaluate all friction forecasts over a given time-period or for a single forecast
 - Gives Average Hit %, Average Miss %, MAE, RMSE
 - Can compare ML models
- Also created a script to plot forecast time-series against the friction observations
- Ran some historical cases through the new friction models
 - 20180122-20180123
 - 20180224-20180225
 - 20180403-20180404
 - 20181226
 - 20190124
 - Using the verification script / plotting package to analyze the cases and model performance

New Model Output Examples

MSP Forecast for 20190207.1815

Lead Time

NCAR Runway Friction Closure Prediction $air \cdot planet \cdot people$ 24

New Model Output Examples

MSP Forecast for 20180225.0015

NCAR Runway Friction Closure Prediction *air* • planet • *people*

25

Bulk Stats for February 9th case (00z to 23z)

80% GBT / 20% Cubist ERROR STATISTICS : HIT PERCENTAGE : 59.606 MISS PERCENTAGE : 40.394 MAE : 0.166 RMSE : 0.22

77% GBT / 23% NN

ERROR STATISTICS : HIT PERCENTAGE : 57.847 MISS PERCENTAGE : 42.153 MAE : 0.175 RMSE : 0.231

Bulk Stats for January 23rd case (07z to 23z)

80% GBT / 20% Cubist ERROR STATISTICS : HIT PERCENTAGE : 61.111 MISS PERCENTAGE : 38.889 MAE : 0.188 RMSE : 0.225

77% GBT / 23% NN

ERROR STATISTICS : HIT PERCENTAGE : 55.696 MISS PERCENTAGE : 44.304 MAE : 0.206 RMSE : 0.239

Final Fixes in Phase II

- Fixed a bug in the system related to generating the subhourly RFCPS runs upon receiving real-time friction observations
 - If system finds friction data during standard run, will wait to re-run and do Forward Error Correction (FEC)
 - to avoid stomping on initial output
 - Upon receiving friction data, output for all runway segments is re-generated, starting at nearest, last 15min time: 4:30, 4:45, 6:45, etc.
 - MSP should always use very latest output data for all runways
- Modified output such that during the middle of a storm, when runway closures are likely at surrounding lead-times
 - when a treatment is forecast, still color code matrix (and pdf plot) with some "yellow" indicating closures possible (instead of white / blank), this makes output look more reasonable during storms
 - Output now looks more reasonable during storms

Runway Closure Matrix Example

RUNWAY CLOSURE GUIDANCE MATRIX GENERATED ON 20190226 15:30

FORECAST LEAD TIME

	1530	1545	1600	1615	1630	1645	1700	1715	1730	1745	1800	1815	1830	1845	1900	1915	1930	1945	2000	2015	2030	2045	2100	2115	213
12L/30R NW 1/3	0.4	0.4	0.39	0.38	0.43	0.44	0.46	0.38	0.37	0.36	0.37	0.36	0.36	0.31	0.31	0.3	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.28
12L/30R Center point	0.42	0.41	0.4	0.39	0.44	0.46	0.47	0.41	0.4	0.39	0.4	0.39	0.39	0.35	0.35	0.34	0.34	0.33	0.32	0.32	0.31	0.31	0.31	0.3	0.3
12L/30R SE 1/3	0.4	0.42	0.41	0.39	0.44	0.46	0.47	0.41	0.4	0.39	0.38	0.39	0.39	0.35	0.35	0.34	0.34	0.33	0.33	0.32	0.32	0.31	0.31	0.3	0.3
12R/30L NW 1/3	0.39	0.42	0.41	0.39	0.43	0.42	0.45	0.37	0.35	0.34	0.33	0.35	0.34	0.34	0.29	0.28	0.28	0.27	0.26	0.26	0.21	0.21	0.22	0.22	0.22
12R/30L Center point	0.4	0.42	0.41	0.39	0.44	0.46	0.47	0.42	0.41	0.4	0.4	0.41	0.41	0.37	0.36	0.35	0.35	0.34	0.33	0.33	0.33	0.32	0.32	0.32	0.31
12R/30L SE 1/3	0.41	0.43	0.41	0.39	0.44	0.46	0.47	0.42	0.41	0.4	0.4	0.41	0.4	0.4	0.36	0.35	0.34	0.34	0.33	0.33	0.33	0.33	0.32	0.32	0.32
17/35 N 1/3	0.39	0.42	0.41	0.39	0.43	0.44	0.46	0.38	0.37	0.36	0.35	0.37	0.36	0.35	0.31	0.3	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.28
17/35 Center point	0.41	0.4	0.42	0.4	0.44	0.44	0.46	0.46	0.4	0.39	0.38	0.37	0.38	0.37	0.32	0.32	0.31	0.31	0.3	0.3	0.3	0.3	0.3	0.3	0.3
17/35 S 1/3	0.4	0.4	0.39	0.37	0.43	0.46	0.41	0.41	0.4	0.39	0.4	0.39	0.35	0.34	0.33	0.32	0.32	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
4/22 SW 1/3	0.35	0.35	0.36	0.36	0.45	0.39	0.4	0.39	0.4	0.36	0.35	0.35	0.34	0.34	0.33	0.32	0.32	0.31	0.31	0.3	0.3	0.3	0.3	0.3	0.3
4/22 Center point	0.39	0.38	0.38	0.36	0.41	0.45	0.39	0.38	0.37	0.36	0.37	0.36	0.32	0.31	0.31	0.3	0.3	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.28
4/22 NE 1/3	0.41	0.41	0.4	0.38	0.43	0.44	0.46	0.38	0.37	0.36	0.35	0.36	0.36	0.31	0.31	0.3	0.3	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.28

No runway closure Runway closure possible Runway closure likely Runway closure most likely

NCAR UCAR

Runway Closure Matrix Example

RUNWAY CLOSURE GUIDANCE MATRIX GENERATED ON 20200209 04:45

FORECAST	LEAD	TIME
----------	------	------

	0445	0500	0515	0530	0545	0600	0615	0630	0645	0700	0715	0730	0745	0800	0815	0830	0845	0900	0915	0930	0945	1000	1015	1030	104
FEC 12L/30R NW 1/3	0.26	0.28	0.23	0.23	0.22	0.22	0.23	0.2	0.21	0.23	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.25	0.25	0.25	0.25	0.
FEC 12L/30R Center point	0.25	0.27	0.22	0.23	0.22	0.22	0.22	0,2	0.2	0.2	0.21	0.21	0.34	0.35	0.22	0.22	0.22	0.24	0.25	0.24	0.25	0.26	0.25	0.26	0.
FEC 12L/30R SE 1/3	0.27	0.29	0.23	0.23	8.22	0.22	0.22	8.2	0.2	0.2	0.21	0.21	0.34	0.34	0.22	0.22	0.22	0.23	0.25	0.24	0.25	0.26	0.25	0.26	0
FEC 12R/30L NW 1/3	0.28	0.29	0.24	0.23	0.23	9.22	0.21	0.2	0.2	0.2	0.2	0.23	0.35	0.35	0.22	0.22	0.22	0.23	0.25	0.25	0.25	0.25	0.25	0.25	0
EC 12R/30L Center point	0.28	0.29	0.24	0.23	0.23	0.22	0.21	0.2	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.26	0.25	0.25	0.25	0
EC 12R/30L SE 1/3	0.31	0.32	0.26	0.25	0.23	0.22	0.21	0.2	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.26	0.25	0.25	0.25	0
17/35 N 1/3	0.36	0.35	0.21	0.22	9.22	0.21	0.21	0.2	0.2	0.2	0.2	0.21	0.34	0.34	0.22	0.22	0.22	0.22	0.22	0.24	0.25	0.25	0.25	0.25	0
7/35 Center point	0.35	0.35	0.21	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.24	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0
7/35 S 1/3	0.36	0.35	0.21	0.22	0.21	0.23	0.21	0.23	0.21	0.23	0.21	0.22	0.35	0.35	9.22	0.24	0.25	0.25	0.25	0.25	0.26	0.25	0.25	0.25	0
1/22 SW 1/3	0.35	0.35	0.21	0.22	0.22	0.22	0.21	0.2	0.2	0.21	0.21	0.21	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.26	0.26	0.25	0.26	0
/22 Center point	0.35	0.35	9.21	9.22	0.22	0.22	0.21	0.21	0.21	0.21	0.21	0.22	0.35	0.35	0.22	0.23	0.24	0.25	0.24	0.25	0.25	0.26	0.25	0.26	0
/22 NE 1/3	0.36	0.35	0.21	0.22	8.22	0.22	0.23	0.2	0.2	0.2	0.2	0.2	0.33	0.33	0.2	0.2	0.2	0.21	0.21	0.21	0.21	0.21	0.23	0.23	0

No runway closure Runway closure possible Runway closure likely Runway closure most likely

30

NCAR Runway Friction Closure Prediction *air* • planet • *people*

Just Before Event starts

Friction Forecast for site MSP Runway 12L/30R NW 1/3 generated on 20200209 02:15

Event getting started

Friction Forecast for FEC site MSP Runway 12L/30R NW 1/3 generated on 20200209 03:45

Middle of Event

Friction Forecast for FEC site MSP Runway 12L/30R NW 1/3 generated on 20200209 04:45

End of Event

Friction Forecast for FEC site MSP Runway 12L/30R NW 1/3 generated on 20200209 06:45

New output: Blowing Snow Potential

NCAR blowing-snow algorithm:

- looks at age of last snowfall, wind-speeds, temperatures, current precip (snow or liquid)
- derives blowing-snow values between 0-1. Then apply a set of thresholds to come of with blowing-snow potential (integer values between 0-3):
- 0: No blowing snow
- 1: Blowing snow potential: Low
- 2: Blowing snow potential: medium
- 3: Blowing snow potential: high

```
if( val >= 0.0 && val <= 0.05 )
return( 0.0 );
else if( val > 0.05 && val <= 0.333 )
return( 1.0 );
else if( val > 0.333 && val <= 0.667 )
return( 2.0 );
else if( val > 0.667 && val <= 1.0 )
return( 3.0 );</pre>
```

- NCAR producing new output variable: blowing-snow-alerts for MSP
 - Providing Blowing-Snow Potential (integers 0-3)
 - 0=None, 1=Low, 2=Medium, 3=High
- Added blowing-snow potential (values 0-3) to output csv file
 - Added to the 15min csv output and new multi-panel plots

New output: Crosswind Potential

• NCAR developed Runway Crosswind Warning variable

Crosswind = WindSpeed * Sin(θ)

Any wind beyond 60 degrees off the runway heading should be considered as all crosswind

New output: Crosswind Potential

- NCAR created new forecast output product for MSP: Crosswind Potential
 - First derive crosswind-speed, then threshold to get potential
 - low_thresh = 25 knots
 - medium_thresh = 30 knots
 - high_thresh = 35 knots
 - Crosswind Potential: 0 = None, 1 = some crosswinds, monitor, 2 = crosswinds likely but not as strong, monitor, 3 = crosswind warning, runway closure likely
- Crosswind has been added to 15min output csv files and new multi-panel plots

Web-display for viewing output

- Built a simple web display for viewing the latest output from the RFCPS
- The web page is both desktop compatible and mobile phone compatible.
 - The display is rendered automatically for each version.
 - For the desktop version, you see the latest Matrix and then below that the latest forecast plots for each runway.
 - For each of the runway plots, there is a carousel feature where you can either swipe left or right to see all the runway section plots or use your mouse to click back and forth. Each runway has 3 plots (A, B,C).
- The mobile version shows the matrix first and then the 12 multi-panel plots are below it and you can use scrolling (with fingers) to see the plots below
- The web display always shows the very latest forecast (the Closure Matrix and plots are all from the very latest, same run).

Web-display for viewing output

The web page is password protected

https://proxy.rap.ucar.edu/rfcps-msp/

Closure Guidance

RUNWAY CLOSURE GUIDANCE MATRIX GENERATED ON 20200901 15:15

1515 1530 1545 1600 1615 1630 1645 1700 1715 1730 1745 1800 1815 1830 1845 1900 1915 1930 1945 2000 2015 2030 2045 2100 2115 12L/30R NW 1/3 12L/30R Center point 0.6 0.6 0.59 0.59 0.59 0.59 0.59 0.6 0.59 0.59 0.59 0.59 0.59 0.63 0.63 0.63 0.63 0.63 0.63 0.64 0.62 0.63 0.63 0.63 0.64 0.64 12L/30R SE 1/3 12R/30L NW 1/3 12R/30L Center point 12R/30L SE 1/3 17/35 N 1/3 17/35 Center point

FORECAST LEAD TIME

ICAR Runway Friction Closure Prediction air • planet • people

Future Plans for Phase II

- Extend forecast window to 72 hours
 - MDSS forecast data goes out 72 hours
 - Utilize forecast data to produce a 72 hour friction and runway closure forecast
- Port RFCPS system to the cloud
 - Install on Amazon (AWS) cloud instance
 - Better up-time, easy to add space and memory, easy to expand system to other states
- Utilize real-time runway treatment data to improve friction forecast
 - Use this data to change forecast treatments from MDSS
 - Will make the friction forecast more accurate, reflecting correct up/down in values due to treatments

Questions

NCAR UCAR Runway Friction Closure Prediction 41